Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000070.xml
Semin Musculoskelet Radiol 2021; 25(05): 690-699
DOI: 10.1055/s-0041-1736585
DOI: 10.1055/s-0041-1736585
Review Article
How to Report: Knee MRI
Abstract
The knee is the most commonly examined joint with magnetic resonance imaging (MRI) and, as such, it is the joint that most trainee radiologists start reporting. This article addresses the main pathologies encountered on MRI examination of the knee, outlining the key features to note and report, as well as providing examples of terminology used to describe these findings.
Publication History
Article published online:
03 December 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Fritz RC, Chaudhari AS, Boutin RD. Preoperative MRI of articular cartilage in the knee: a practical approach. J Knee Surg 2020; 33 (11) 1088-1099
- 2 Bordalo-Rodrigues M, White LM. Knee. In: Hodler J, Kubik-Huch RA, von Schulthess GK. eds. Musculoskeletal Diseases 2021–2024: Diagnostic Imaging. Cham, Switzerland: Springer; 2021. :Chapter 7
- 3 White CL, Chauvin NA, Waryasz GR, March BT, Francavilla ML. MRI of native knee cartilage delamination injuries. AJR Am J Roentgenol 2017; 209 (05) W317-W321
- 4 Markhardt BK, Kijowski R. The clinical significance of dark cartilage lesions identified on MRI. AJR Am J Roentgenol 2015; 205 (06) 1251-1259
- 5 Schwaiger BJ, Gersing AS, Mbapte Wamba J, Nevitt MC, McCulloch CE, Link TM. Can signal abnormalities detected with MR imaging in knee articular cartilage be used to predict development of morphologic cartilage defects? 48-month data from the Osteoarthritis Initiative. Radiology 2016; 281 (01) 158-167
- 6 Pfirrmann CW, Duc SR, Zanetti M, Dora C, Hodler J. MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology 2008; 249 (01) 236-241
- 7 Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage 2006; 14 (10) 1081-1085
- 8 Sowers MF, Hayes C, Jamadar D. et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage 2003; 11 (06) 387-393
- 9 Hughes RJ, Houlihan-Burne DG. Clinical and MRI considerations in sports-related knee joint cartilage injury and cartilage repair. Semin Musculoskelet Radiol 2011; 15 (01) 69-88
- 10 Henderson IJ, La Valette DP. Subchondral bone overgrowth in the presence of full-thickness cartilage defects in the knee. Knee 2005; 12 (06) 435-440
- 11 Lecouvet F, Van Haver T, Acid S. et al. Magnetic resonance imaging (MRI) of the knee: identification of difficult-to-diagnose meniscal lesions. Diagn Interv Imaging 2018; 99 (02) 55-64
- 12 Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics 2014; 34 (04) 981-999
- 13 De Smet AA. How I diagnose meniscal tears on knee MRI. AJR Am J Roentgenol 2012; 199 (03) 481-499
- 14 Oei EH, Nikken JJ, Verstijnen AC, Ginai AZ, Myriam Hunink MG. MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology 2003; 226 (03) 837-848
- 15 McKnight A, Southgate J, Price A, Ostlere S. Meniscal tears with displaced fragments: common patterns on magnetic resonance imaging. Skeletal Radiol 2010; 39 (03) 279-283
- 16 de Abreu MR, Chung CB, Trudell D, Resnick D. Meniscofemoral ligaments: patterns of tears and pseudotears of the menisci using cadaveric and clinical material. Skeletal Radiol 2007; 36 (08) 729-735
- 17 Griffith JF. Five overlooked injuries on knee MRI. AJR Am J Roentgenol 2021; September 27 ( Epub ahead of print)
- 18 Griffith JF, Ng AWH. Top-ten tips for imaging the ACL. Semin Musculoskelet Radiol 2019; 23 (04) 444-452
- 19 Ng AW, Griffith JF, Hung EH, Law KY, Yung PS. MRI diagnosis of ACL bundle tears: value of oblique axial imaging. Skeletal Radiol 2013; 42 (02) 209-217
- 20 Nakase J, Toratani T, Kosaka M, Ohashi Y, Tsuchiya H. Roles of ACL remnants in knee stability. Knee Surg Sports Traumatol Arthrosc 2013; 21 (09) 2101-2106
- 21 Tjoumakaris FP, Donegan DJ, Sekiya JK. Partial tears of the anterior cruciate ligament: diagnosis and treatment. Am J Orthop 2011; 40 (02) 92-97
- 22 Van Dyck P, De Smet E, Veryser J. et al. Partial tear of the anterior cruciate ligament of the knee: injury patterns on MR imaging. Knee Surg Sports Traumatol Arthrosc 2012; 20 (02) 256-261
- 23 Busch MT, Fernandez MD, Aarons C. Partial tears of the anterior cruciate ligament in children and adolescents. Clin Sports Med 2011; 30 (04) 743-750
- 24 Zhang J, Hao D, Duan F, Yu T, Zhang C, Che J. The rotating stretched curved planar reconstruction of 3D-FIESTA MR imaging for evaluating the anterior cruciate ligament of the knee joint. Magn Reson Imaging 2019; 55: 46-51
- 25 Lefevre N, Naouri JF, Bohu Y, Klouche S, Herman S. Partial tears of the anterior cruciate ligament: diagnostic performance of isotropic three-dimensional fast spin echo (3D-FSE-Cube) MRI. Eur J Orthop Surg Traumatol 2014; 24 (01) 85-91
- 26 Gokalp G, Demirag B, Nas OF, Aydemir MF, Yazici Z. Contribution of thin slice (1 mm) oblique coronal proton density-weighted MR images for assessment of anteromedial and posterolateral bundle damage in anterior cruciate ligament injuries. Eur J Radiol 2012; 81 (09) 2358-2365
- 27 Vahey TN, Hunt JE, Shelbourne KD. Anterior translocation of the tibia at MR imaging: a secondary sign of anterior cruciate ligament tear. Radiology 1993; 187 (03) 817-819
- 28 Robertson PL, Schweitzer ME, Bartolozzi AR, Ugoni A. Anterior cruciate ligament tears: evaluation of multiple signs with MR imaging. Radiology 1994; 193 (03) 829-834
- 29 Celikyay F, Yuksekkaya R, Bilgic E. A retrospective comparison of ACL tear and mucoid degeneration MRI findings and an emphasis on evaluating of ACL, Blumensaat, and PCL angles. J Belg Soc Radiol 2020; 104 (01) 36
- 30 Kompel A, Haran PH, Murakami AM. et al. MRI-detected knee ligament sprains and associated internal derangement in athletes competing at the Rio de Janeiro 2016 Summer Olympics. Open Access J Sports Med 2021; 12 (12) 23-32
- 31 De Maeseneer M, Van Roy F, Lenchik L, Barbaix E, De Ridder F, Osteaux M. Three layers of the medial capsular and supporting structures of the knee: MR imaging-anatomic correlation. Radiographics 2000; 20 (Spec No): S83-S89
- 32 Athwal KK, Willinger L, Shinohara S, Ball S, Williams A, Amis AA. The bone attachments of the medial collateral and posterior oblique ligaments are defined anatomically and radiographically. Knee Surg Sports Traumatol Arthrosc 2020; 28 (12) 3709-3719
- 33 Dirim B, Haghighi P, Trudell D, Portes G, Resnick D. Medial patellofemoral ligament: cadaveric investigation of anatomy with MRI, MR arthrography, and histologic correlation. AJR Am J Roentgenol 2008; 191 (02) 490-498
- 34 Schweitzer ME, Tran D, Deely DM, Hume EL. Medial collateral ligament injuries: evaluation of multiple signs, prevalence and location of associated bone bruises, and assessment with MR imaging. Radiology 1995; 194 (03) 825-829
- 35 Boutin RD, Fritz RC, Walker REA, Pathria MN, Marder RA, Yao L. Tears in the distal superficial medial collateral ligament: the wave sign and other associated MRI findings. Skeletal Radiol 2020; 49 (05) 747-756
- 36 Keyhani S, Ahn JH, Verdonk R, Soleymanha M, Abbasian M. Arthroscopic all-inside ramp lesion repair using the posterolateral transseptal portal view. Knee Surg Sports Traumatol Arthrosc 2017; 25 (02) 454-458
- 37 Wen DY, Propeck T, Kane SM, Godbee MT, Rall KL. MRI description of knee medial collateral ligament abnormalities in the absence of trauma: edema related to osteoarthritis and medial meniscal tears. Magn Reson Imaging 2007; 25 (02) 209-214
- 38 Bergin D, Keogh C, O'Connell M. et al. Atraumatic medial collateral ligament oedema in medial compartment knee osteoarthritis. Skeletal Radiol 2002; 31 (01) 14-18