Synthesis 2022; 54(08): 1977-1982
DOI: 10.1055/s-0041-1737339
feature

Total Synthesis of (+)-Kingianin A by Enantioselective Cycloaddition of Strained Cyclobutenone

Jie Zhang
a   Department of Chemistry and Biology, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun 130012, P. R. of China
,
Peng Yan
b   Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. of China
,
Zhichao Wang
b   Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. of China
,
Jinbo Zhao
a   Department of Chemistry and Biology, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun 130012, P. R. of China
,
Qin Chen
b   Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. of China
,
Ping Lu
b   Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. of China
› Institutsangaben
We are grateful for the financial support from the National Natural Science Foundation of China (22071028, 21772024, 21921003).


Abstract

We report here the first asymmetric total synthesis of (+)-kingianin A via dimerization of an enantioenriched bicyclo[4.2.0]octadiene. The synthesis features a chiral oxazaborolidinium ion catalyzed Diels–Alder reaction of strained cyclobutenone and stereoselective functionalization of the cyclobutane ring. A preliminary biological study indicated that (+)-kingianin A exhibits potent anticancer activities.

Supporting Information



Publikationsverlauf

Eingereicht: 09. November 2021

Angenommen: 08. Dezember 2021

Artikel online veröffentlicht:
08. Februar 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sinninghe Damsté JS, Strous M, Rijpstra WI. C, Hopmans EC, Geenevasen JA. J, van Duin AC. T, van Niftrik LA, Jetten MS. M. Nature 2002; 419: 708
    • 1b Sinninghe Damsté JS, Rijpstra WI. C, Geenevasen JA. J, Strous M, Jetten MS. M. FEBS J. 2005; 272: 4270
    • 2a Siengalewicz P, Mulzer J, Rinner U. Eur. J. Org. Chem. 2011; 7041
    • 2b Xie S, Wu Y, Qiao Y, Guo Y, Wang J, Hu Z, Zhang Q, Li X, Huang J, Zhou Q, Luo Z, Liu J, Zhu H, Xue Y, Zhang Y. J. Nat. Prod. 2018; 81: 1311
    • 3a Leverrier A, Dau ME. T. H, Retailleau P, Awang K, Guéritte F, Litaudon M. Org. Lett. 2010; 12: 3638
    • 3b Leverrier A, Awang K, Guéritte F, Litaudon M. Phytochemistry 2011; 72: 1443
    • 3c Azmi MN, Peresse T, Remeur C, Chan G, Roussi F, Litaudon M, Awang K. Fitoterapia 2016; 109: 190
    • 4a Drew SL, Lawrence AL, Sherburn MS. Angew. Chem. Int. Ed. 2013; 52: 4221
    • 4b Drew SL, Lawrence AL, Sherburn MS. Chem. Sci. 2015; 6: 3886
    • 6a Sharma P, Ritson DJ, Burnley J, Moses JE. Chem. Commun. 2011; 47: 10605
    • 6b Moore JC, Davies ES, Walsh DA, Sharma P, Moses JE. Chem. Commun. 2014; 50: 12523
    • 7a Wang M, Zhong C, Lu P. Synlett 2021; 32: 1253
    • 7b Wang M, Chen J, Chen Z, Zhong C, Lu P. Angew. Chem. Int. Ed. 2018; 57: 2707
    • 7c Zhong C, Huang Y, Zhang H, Zhou Q, Liu Y, Lu P. Angew. Chem. Int. Ed. 2020; 59: 2750
    • 7d Zhong C, Wang SW, Lu P. Org. Chem. Front. 2021; 8: 2977
  • 8 Ryu DH, Lee TW, Corey EJ. J. Am. Chem. Soc. 2002; 124: 9992
  • 9 Yan P, Zhong C, Zhang J, Liu Y, Fang H, Lu P. Angew. Chem. Int. Ed. 2021; 60: 4609
  • 10 Vrielynck F, Van Haver D, Vandewalle M, Verlinden L, Verstuyf A, Bouillon R, Croce G, DeClercq P. Eur. J. Org. Chem. 2009; 1720
  • 11 Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
  • 12 Bell F, Ledwith A, Sherrington D. J. Chem. Soc. C 1969; 2719