Synthesis 2022; 54(13): 3025-3046
DOI: 10.1055/s-0041-1737396
paper

Enantiopure β3-Trifluoromethyl-β3-homoalanine Derivatives: Coupling with Boc-Protected Amino Acids and Conformational Studies of Peptides in Solid State

Nathalie Saraiva Rosa
,
Fabienne Grellepois
We gratefully thank the Agence Nationale de la Recherche for financial support (TFM4Asym project ANR JCJC: ANR-13-JS07-0011-01).


Abstract

The use of enantiopure β3-trifluoromethyl-β3-alkyl β-amino acids for the design of peptides would contribute to drastically enhance peptide stability in vivo. Moreover, the steric hindrance generated by the substituents on the tetrasubstituted carbon adjacent to the nitrogen function coupled to the electron-withdrawing effect of the trifluoromethyl group is more likely to influence the 3D conformation of the peptide. Herein, we describe a short, scalable and robust method to synthesize N- and/or C-protected enantiopure (R)- and (S)-β3-trifluoromethyl-β3-methyl β-amino acid derivatives and liquid-phase coupling methods suitable for incorporation of Boc-protected amino acids into short α/β- and β-peptides. Conformational studies of some of these original peptides via X-ray diffraction analysis highlighted intraresidue C6 hydrogen bonds within trifluoromethylated amino acids.

Supporting Information



Publication History

Received: 22 November 2021

Accepted after revision: 16 February 2022

Article published online:
06 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Cabrele C, Martinek TA, Reiser O, Berlicki L. J. Med. Chem. 2014; 57: 9718
    • 1b George KL, Horne WS. Acc. Chem. Res. 2018; 51: 1220
    • 2a Möhle K, Günther R, Thormann M, Sewald N, Hofmann H.-J. Biopolymers 1999; 50: 167
    • 2b Seebach D, Beck AK, Bierbaum DJ. Chem. Biodiversity 2004; 1: 1111
    • 2c Seebach D, Hook DF, Glättli A. Biopolymers (Pept. Sci.) 2006; 84: 23
    • 2d Wu Y.-D, Han W, Wang D.-P, Gao Y, Zhao Y.-L. Acc. Chem. Res. 2008; 41: 1418
    • 2e Pohl G, Beke-Somfai T, Csizmadia IG, Perczel A. Amino Acids 2012; 43: 735
    • 3a Pilsl LK. A, Reiser O. Amino Acids 2011; 41: 709
    • 3b Vasudev PG, Chatterjee S, Shamala N, Balaram P. Chem. Rev. 2011; 111: 657
    • 3c Martinek TA, Fülöp F. Chem. Soc. Rev. 2012; 41: 687
    • 4a Seebach D, Abele S, Sifferlen T, Hänggi M, Gruner S, Seiler P. Helv. Chim. Acta 1998; 81: 2218
    • 4b Seebach D, Sifferlen T, Mathieu PA, Häne AM, Krell CM, Bierbaum DJ, Abele S. Helv. Chim. Acta 2000; 83: 2849
    • 4c Abele S, Seebach D. Eur. J. Org. Chem. 2000; 1
    • 4d Günther R, Hofmann H.-J. Helv. Chim. Acta 2002; 85: 2149
    • 5a Mollica A, Paglialunga Paradisi M, Torino D, Spisani S, Lucente G. Amino Acids 2006; 30: 453
    • 5b Vasudev PG, Rai R, Shamala N, Balaram P. Biopolymers (Pept. Sci.) 2008; 90: 138
    • 5c Basuroy K, Rajagopal A, Raghothama S, Shamala N, Balaram P. Chem. Asian J. 2012; 7: 1671
    • 5d Wani NA, Raghothama S, Singh UP, Rai R. Chem. Eur. J. 2017; 23: 8364
  • 6 Andreini M, Taillefumier C, Chrétien F, Thery V, Chapleur Y. J. Org. Chem. 2009; 74: 7651
    • 7a Qiu XL, Meng WD, Qing FL. Tetrahedron 2004; 60: 6711
    • 7b Smits R, Cadicamo CD, Burger K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
    • 7c Qiu XL, Qing FL. Eur. J. Org. Chem. 2011; 3261
    • 7d Acena JL, Sorochinsky AE, Soloshonok VA. Synthesis 2012; 44: 1591
    • 7e Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Chem. Rev. 2019; 119: 10718
    • 7f Mei H, Han J, Klika KD, Izawa K, Sato T, Meanwell NA, Soloshonok VA. Eur. J. Med. Chem. 2020; 186: 111826
    • 7g Brittain WD. G, Lloyd CM, Cobb SL. J. Fluorine Chem. 2020; 239: 109630
    • 7h Zhang XX, Gao Y, Hu XS, Ji CB, Liu YL, Yu JS. Adv. Synth. Catal. 2020; 362: 4763
    • 7i Eder I, Haider V, Zebrowski P, Waser M. Eur. J. Org. Chem. 2021; 202
    • 8a Yoder NC, Kumar K. Chem. Soc. Rev. 2002; 31: 335
    • 8b Jackel C, Koksch B. Eur. J. Org. Chem. 2005; 4483
    • 8c Marsh EN. G. Acc. Chem. Res. 2014; 47: 2878
    • 8d Gerling UI. M, Salwiczek M, Cadicamo CD, Erdbrink H, Czekelius C, Grage SL, Wadhwani P, Ulrich AS, Behrends M, Haufe G, Koksch B. Chem. Sci. 2014; 5: 819
    • 8e Gimenez D, Phelan A, Murphy CD, Cobb SL. Beilstein J. Org. Chem. 2021; 17: 293
    • 9a Mikami K, Fustero S, Sánchez-Roselló M, Aceña JL, Soloshonok V, Sorochinsky A. Synthesis 2011; 3045
    • 9b Kiss L, Fülöp F. Chem. Rec. 2018; 18: 266
    • 10a Gessier F, Noti C, Rueping M, Seebach D. Helv. Chim. Acta 2003; 86: 1862
    • 10b Mathad RI, Gessier F, Seebach D, Jaun B. Helv. Chim. Acta 2005; 88: 266
    • 10c Mathad RI, Jaun B, Flögel O, Gardiner J, Löweneck M, Codée JD. C, Seeberger PH, Seebach D. Helv. Chim. Acta 2007; 90: 2251
    • 10d Bachmann S, Jaun B, van Gunsteren WF, Wang D. Helv. Chim. Acta 2010; 93: 1870
    • 10e Jaun B, Seebach D, Mathad RI. Helv. Chim. Acta 2011; 94: 355
    • 10f Peddie V, Butcher RJ, Robinson WT, Wilce MC. J, Traore DA. K, Abell AD. Chem. Eur. J. 2012; 18: 6655
    • 10g Hassoun A, Grison CM, Guillot R, Boddaert T, Aitken DJ. New J. Chem. 2015; 39: 3270
    • 10h Cosimi E, Engl OD, Saadi J, Ebert M.-O, Wennemers H. Angew. Chem. Int. Ed. 2016; 55: 13127
  • 11 Zanda M. New J. Chem. 2004; 28: 1401
    • 12a Fustero S, Chiva G, Piera J, Sanz-Cervera JF, Volonterio A, Zanda M, Ramirez de Arellano C. J. Org. Chem. 2009; 74: 3122
    • 12b Cho J, Sawaki K, Hanashima S, Yamaguchi Y, Shiro M, Saigo K, Ishida Y. Chem. Commun. 2014; 50: 9855
    • 13a Fustero S, del Pozo C, Catalan S, Aleman J, Parra A, Marcos V, Garcia Ruano JL. Org. Lett. 2009; 11: 641
    • 13b Grellepois F. J. Org. Chem. 2013; 78: 1127
    • 13c Grellepois F, Ben Jamaa A, Saraiva Rosa N. Org. Biomol. Chem. 2017; 15: 9696
    • 13d Peng Y.-Y, Liu P, Liu Z.-J, Liu J.-T, Mao H.-F, Yao Y.-L. Tetrahedron 2018; 74: 3074
    • 13e Devannah V, Sharma R, Watson DA. J. Am. Chem. Soc. 2019; 141: 8436
    • 13f Ran G.-Y, Chen C, Yang X.-X, Zhao Z, Du W, Chen Y.-C. Org. Lett. 2020; 22: 4732
    • 13g Sun X.-S, Wang X.-H, Tao H.-Y, Wei L, Wang C.-J. Chem. Sci. 2020; 11: 10984
  • 14 Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 15a Kanzian T, Nigst TA, Maier A, Pichl S, Mayr H. Eur. J. Org. Chem. 2009; 6379
    • 15b An F, Maji B, Min E, Ofial AR, Mayr H. J. Am. Chem. Soc. 2020; 142: 1526
    • 15c Demchuk OP, Hryshchuk OV, Vaschen BV, Trofymchuk SA, Melnykov KP, Skreminskiy A, Volochnyuk DM, Grygorenko OO. Eur. J. Org. Chem. 2021; 87
  • 16 Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
  • 17 Devillers E, Pytkowicz J, Chelain E, Brigaud T. Amino Acids 2016; 48: 1457
  • 18 CCDC 2109097 [(R,R)-8], CCDC 2099667 (9c), CCDC 2099668 (9d), CCDC 2099669 (9h), CCDC 2099670 (10b), CCDC 2099671 (10d), CCDC 2099672 (11a), CCDC 2099673 (12a) and CCDC 2099674 (14) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 19 Tang TP, Ellman JA. J. Org. Chem. 2002; 67: 7819
  • 20 Chaume G, Lensen N, Caupène C, Brigaud T. Eur. J. Org. Chem. 2009; 5717
  • 21 Jad YE, Acosta GA, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F. Org. Biomol. Chem. 2015; 13: 2393
  • 22 Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar AG. J. Org. Chem. 2019; 84: 4615
  • 23 Mixture of rotamers confirmed by NOE 1D NMR experiments; see: Hu DX, Grice P, Ley SV. J. Org. Chem. 2012; 77: 5198
  • 24 The trans conformation was attributed to the major rotamer and cis to the minor one according to their chemical shifts in 13C NMR spectra; see: Beausoleil E, Lubell WD. J. Am. Chem. Soc. 1996; 118: 12902
  • 25 Koksch B, Dahl C, Radics G, Vocks A, Arnold K, Arnhold J, Sieler J, Burger K. J. Pept. Sci. 2004; 10: 67
    • 26a Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 26b El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 26c Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
  • 27 Vijayadas KN, Nair RV, Gawade RL, Kotmale AS, Prabhakaran P, Gonnade RG, Puranik VG, Rajamohanan PR, Sanjayan GJ. Org. Biomol. Chem. 2013; 11: 8348
    • 28a Steiner T. Angew. Chem. Int. Ed. 2002; 41: 48
    • 28b Arunan E, Desiraju GR, Klain RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Pure Appl. Chem. 2011; 83: 1637
    • 28c Desiraju GR. Angew. Chem. Int. Ed. 2011; 50: 52
  • 29 Wu Y.-D, Lin J.-Q, Zhao Y.-L. Helv. Chim. Acta 2002; 85: 3144
    • 30a Abele S, Seiler P, Seebach D. Helv. Chim. Acta 1999; 82: 1559
    • 30b Saavedra C, Hernández R, Boto A, Álvarez E. J. Org. Chem. 2009; 74: 4655
    • 30c Saavedra CJ, Boto A, Hernández R, Miranda JI, Aizpurua JM. J. Org. Chem. 2012; 77: 5907
    • 31a Hunter CA. Angew. Chem. Int. Ed. 2004; 43: 5310
    • 31b McKenzie J, Hunter CA. Phys. Chem. Chem. Phys. 2018; 20: 25324