Synthesis, Table of Contents Synthesis 2022; 54(09): 2225-2232DOI: 10.1055/s-0041-1737805 paper First Total Syntheses of (±)-Callyspongidic Acids and 2-epi-(±)-Callyspongidic Acids Sayani Das , Anju Bala , Kapil Sharma , Shivajirao L. Gholap ∗ Recommend Article Abstract Buy Article All articles of this category Abstract The first total syntheses of (±)-callyspongidic acids and 2-epi-(±)-callyspongidic acids were achieved in high overall yield from epoxy ester derived from commercially available l-(+)-tartaric acid. The key features of these syntheses are the stereoselective opening of epoxide with organocuprates and the chemoselective addition of Grignard reagent to ketone in the presence of ester. The synthetic route reported here is operationally simple, very short and amenable for the synthesis of several analogues of this class. Keywords Keywordsalkyl citrates - callyspongidic acids - natural products - tartaric acid - total synthesis Full Text References References 1 Laport MS, Santos OC. S, Muricy G. Curr. Pharm. Biotechnol. 2009; 10: 86 2 Carballo JL, Cruz-Barraza JA, Vega C, Nava H, Chavez-Fuentes M. Sci. Rep. 2019; 9: 9409 3 Suksamrarn A, Jankam A, Tarnchompoo B, Putchakarn S. J. Nat. Prod. 2002; 65: 1194 4 Cruz-Barraza JA, Carballo JL. Zool. Stud. 2008; 47: 741 5 Calabro K, Chalen BE, Genta-Jouve G, Jaramillo KB, Dominguez C, de la Cruz M, Cautain B, Reyes F, Thomas OP, Rodriguez J. J. Nat. Prod. 2018; 81: 2301 6a Harris GH, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Goklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE. Bioorg. Med. Chem. Lett. 1995; 5: 2403 6b Watanabe S, Hirai H, Kambara T, Kojima Y, Nishida H, Sugiura A, Yamauchi Y, Yoshikawa N, Harwood HJ. Jr, Huang LH, Kojima N. J. Antibiot. 2001; 54: 1025 6c Ishii T, Nonaka K, Sugawara A, Iwatsuki M, Masuma R, Hirose T, Sunazuka T, Omura S, Shiomi K. J Antibiot. 2015; 68: 633 6d Okada M, Park S, Koshizawa T, Ueda M. Tetrahedron 2009; 65: 2136 7a Rizzacasa MA, Sturgess D. Org. Biomol. Chem. 2014; 12: 1367 7b Calo F, Bondke A, Richardson J, White AJ. P, Barrett AG. M. Tetrahedron Lett. 2009; 50: 3388 7c Atkin L, Chen Z, Robertson A, Sturgess D, White JM, Rizzacasa MA. Org. Lett. 2018; 20: 4255 7d Calo F, Richardson J, Barrett AG. M. J. Org. Chem. 2008; 73: 9692 8a Das S, Dalal A, Gholap SL. Synth. Commun. 2020; 50: 580 8b Sharma K, Surineni N, Gholap SL. Tetrahedron Lett. 2020; 61: 152608 8c Das S, Dalal A, Gholap SL. Org. Biomol. Chem. 2021; 19: 1100 8d Sharma K, Surineni N, Das S, Gholap SL. Org. Biomol. Chem. 2021; 19: 3698 8e Sharma K, Surineni N, Dalal A, Gholap SL. Eur. J. Org. Chem. 2021; 4398 9a Ram RN, Charles I. Tetrahedron 1997; 53: 7335 9b Mori K, Iwasawa H. Tetrahedron 1980; 36: 87 9c Corey EJ, Lansbury PT. Jr. J. Am. Chem. Soc. 1983; 105: 4093 9d Pirrung MC, Han H, Nunn DS. J. Org. Chem. 1994; 59: 2423 9e Saito S, Komada K, Moriwake T. Org. Synth. 1996; 73: 184 10a Katz JE, Dumlao DS, Wasserman JI, Lansdown MG, Jung ME, Faull KF, Clarke S. Biochemistry 2004; 43: 5976 10b Pirrung MC, Han H, Nunn DS. J. Org. Chem. 1994; 59: 2423 11 The formation of other diastereomers was not observed within detectable limits in 1H NMR spectra. 12 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155 13 The keto-enol tautomeric equilibrium was confirmed by using 1H NMR spectroscopy. 14 Omura K, Swern D. Tetrahedron 1978; 34: 1651 15 The Cram or Felkin–Anh product 10a is the major product. Supplementary Material Supplementary Material Supporting Information