RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2022; 33(13): 1282-1286
DOI: 10.1055/s-0041-1738399
DOI: 10.1055/s-0041-1738399
letter
Diversity-Oriented Synthesis of Coumarin-Fused Cyclopentanones via a Nucleophilic Phosphine Controlled Cascade Reaction
We gratefully acknowledge the Basic Public Welfare Research Program of Zhejiang Province (LGJ22B020001) and the Zhejiang University of Science and Technology (2021QN061) for generous financial support.
Abstract
A phosphine-promoted intermolecular annulation reaction of functionalized 3-benzoyl coumarin with alkynone has been disclosed. This reaction was found to be highly dependent on the nucleophilicity of the phosphine. Two classes of coumarin-fused cyclopentanones were selectively afforded in moderate to good yields with excellent diastereoselectivities under the mild reaction conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738399.
- Supporting Information
Publikationsverlauf
Eingereicht: 24. Februar 2022
Angenommen nach Revision: 11. Mai 2022
Artikel online veröffentlicht:
20. Juni 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Simeonov SP, Nunes JP. M, Guerra K, Kurteva VB, Afonso CA. M. Chem. Rev. 2016; 116: 5744
- 1b Xiong Y, Lin H, Zhu C.-L, Chen Y.-H, Ye R, Hu G.-W, Xie J.-H, Zhou Q.-L. Org. Lett. 2021; 23: 8883
- 1c Bhoite SP, Bansode AH, Burate PA, Suryavanshi G. Asian J. Org. Chem. 2019; 8: 1907
- 1d Xu Y, Su T, Huang Z, Dong G. Angew. Chem. Int. Ed. 2016; 55: 2559 ; Angew. Chem. 2016, 128, 2605
- 1e Fuchibe K, Takayama R, Aono T, Hu J, Hidano T, Sasagawa H, Fujiwara M, Miyazaki S, Nadano R, Ichikawa J. Synthesis 2018; 50: 514
- 2a Kauteteladze AG, Kuznetsov DM. J. Org. Chem. 2017; 82: 10795
- 2b Kuhn C, Roulland E, Madelmont JC, Monneret C, Florent JC. Org. Biomol. Chem. 2004; 2: 2028
- 2c Eddolls JP, Iqbal M, Roberts SM, Santoro MG. Tetrahedron 2004; 60: 2539
- 2d Furuta K, Maeda M, Hirata Y, Shibata S, Kiuchi K, Suzuki M. Bioorg. Med. Chem. Lett. 2007; 17: 5487
- 2e Nicolaou KC, Heretsch P, ElMarrouni A, Hale CR. H, Pulukuri KK, Kudva AK, Narayan V, Prabhu KS. Angew. Chem. Int. Ed. 2014; 53: 10443 ; Angew. Chem. 2014, 126, 10611
- 2f Scognamiglio J, Jones L, Letizia CS, Api AM. Food Chem. Toxicol. 2012; 50: S608
- 2g Aluko OM, Iroegbu JD, Ijomone OM, Umukoro S. Clin. Psychopharmacol. Neurosci. 2021; 19: 220
- 2h Ullah R, Ali G, Khan A, Ahmad S, Al-Harrasi A. Int. J. Mol. Sci. 2021; 22: 9559
- 3a Li J, Liang X, Wang Q, Breyer RM, McCullough L, Andreasson K. Neurosci. Lett. 2008; 438: 210
- 3b Thach D, Brill Z, Grover H, Esguerra K, Thompson J, Maimone T. Angew. Chem. Int. Ed. 2020; 59: 1532 ; Angew. Chem. 2020, 132, 1548
- 3c Bukanova JV, Solntseva EI, Kudova E. Front. Mol. Neurosci. 2020;
- 3d Yang X.-X, Zhao J.-R, Jia X.-S, Yang L.-W, Zhai H.-B. Chin. J. Chem. 2003; 21: 970
- 4a Bhoite SP, Bansode AH, Burate PA, Suryavanshi G. Asian J. Org. Chem. 2019; 8: 1907
- 4b Dutta S, Bhat NS. ACS Omega 2021; 6: 35145
- 4c Baumann M, Baxendale IR. Synthesis 2018; 50: 753
- 4d Wang C, Yu Z, Yang Y, Sun Z, Wang Y, Shi C, Liu Y.-Y, Wang A, Leus K, Voort PV. D. Molecules 2021; 26: 5736
- 4e Batsanov AS, Knowles JP, Lightfoot AP, Maw G, Thirsk CE, Twiddle SJ. R, Whiting A. Org. Lett. 2007; 9: 5565
- 4f Fuchibe K, Takayama R, Aono T, Hu J, Hidano T, Sasagawa H, Fujiwara M, Miyazaki S, Nadano R, Ichikawa J. Synthesis 2018; 50: 514
- 4g Nie S, Chen X, Ma Y, Li W, Yu B. Carbohydr. Res. 2016; 432: 36
- 5a Mbofana CT, Miller S. ACS Catal. 2014; 4: 3671
- 5b Wilson JE, Sun J, Fu GC. Angew. Chem. Int. Ed. 2010; 49: 161 ; Angew. Chem. 2010, 122, 165
- 5c Chen X.-Y, Li S, Sheng H, Liu Q, Jafari E, Essen CV, Rissanen K, Enders D. Chem. Eur. J. 2017; 23: 13042
- 5d Lathrop SP, Rovis T. J. Am. Chem. Soc. 2009; 131: 13628
- 5e Zhang J, Miao Z. Org. Biomol. Chem. 2018; 16: 9461
- 5f Tan C.-Y, Lu H, Zhang J.-L, Liu J.-Y, Xu P.-F. J. Org. Chem. 2020; 85: 594
- 6a Xu Z, Chen Q, Zhang Y, Liang C. Fitoterapia 2021; 150: 104863
- 6b Sandhu S, Bansal Y, Silakari O, Bansal G. Bioorg. Med. Chem. 2014; 22: 3806
- 6c Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee K.-H. Med. Res. Rev. 2003; 23: 322
- 6d Song F, Huo X, Guo Z. Curr. Top. Med. Chem. 2021; 21: 1692
- 6e Khan A, Kulkarni MV, Gopal M, Shahabuddin MS, Sun CM. Bioorg. Med. Chem. Lett. 2005; 15: 3584
- 6f Chougala BM, Shastri SL, Holiyachi M, Shastri LA, More SS, Ramesh KV. Med. Chem. Res. 2015; 24: 4128
- 6g Vaarla K, Vishwapathi V, Vermeire K, Vedula RR, Kulkarni CV. J. Mol. Struct. 2022; 1249: 131662
- 6h Dorababu A. Arch. Pharm. 2022; 355: 2100345
- 7a Huang Y, Liao J, Wang W, Liu H, Guo H. Chem. Commun. 2020; 56: 15235
- 7b Wang Y, Pan J, Chen Z, Sun X, Wang Z. Mini.-Rev. Med. Chem. 2013; 13: 836
- 7c Wang T, Han X, Zhong F, Yao W, Lu Y. Acc. Chem. Res. 2016; 49: 1369
- 7d Chuang S.-C, Nallapati SB. Asian J. Org. Chem. 2018; 7: 1743
- 8a Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 8b Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
- 8c Ma D, Lin Y, Lu X, Yu Y. Tetrahedron Lett. 1988; 29: 1045
- 8d Ma D, Yu Y, Lu X. J. Org. Chem. 1989; 54: 1105
- 8e Ma D, Lu X. Tetrahedron Lett. 1989; 30: 843
- 8f Ma D, Lu X. Tetrahedron 1990; 46: 3189
- 8g Xu Z, Lu X. Tetrahedron Lett. 1997; 38: 3461
- 8h Xu Z, Lu X. J. Org. Chem. 1998; 63: 5031
- 8i Xu Z, Lu X. Tetrahedron Lett. 1999; 40: 549
- 9a Zhang J, Luo J, Li X, Zhang Q, Wu Z, Lan Y, Wei D. J. Org. Chem. 2021; 86: 15276
- 9b He Z.-L, Chen P, Chen Z.-C, Du W, Chen Y.-C. Org. Lett. 2022; 24: 100
- 9c Zhang J, Chan W.-L, Chen L, Ullah N, Lu Y. Org. Chem. Front. 2019; 6: 2210
- 9d Chang G.-H, Wang C.-Y, Reddy GM, Tsai Y.-L, Lin W. J. Org. Chem. 2016; 81: 10071
- 9e Fan L.-P, Yang W.-J, Xu D.-C, Li X.-S, Xie J.-W. Synth. Commun. 2011; 41: 3376
- 9f Han X, Wang Y, Zhong F, Lu Y. J. Am. Chem. Soc. 2011; 133: 1726
- 9g Han X, Wang S.-X, Zhong F, Lu Y. Synthesis 2011; 1859
- 9h Zhao Q.-Y, Han X, Wei Y, Shi M, Lu Y. Chem. Commun. 2012; 48: 970
- 9i Han X, Zhong F, Wang Y, Lu Y. Angew. Chem. Int. Ed. 2012; 51: 767 ; Angew. Chem. 2012, 124, 791
- 9j Yang L, Xie P, Li E, Li X, Huang Y, Chen R. Org. Biomol. Chem. 2012; 10: 7628
- 9k Wu L, Chen K, Huang Y, Li E.-Q. Asian J. Org. Chem. 2020; 9: 1179
- 9l Feng J, Huang Y. ACS Catal. 2020; 10: 3541
- 9m Shi W, Mao B, Xu J, Wang Q, Wang W, Wu Y, Li X, Guo H. Org. Lett. 2020; 22: 2675
- 9n Wang C, Chen Y, Li J, Zhou L, Wang B, Xiao Y, Guo H. Org. Lett. 2019; 21: 7519
- 9o Sriramurthy V, Kwon O. Org. Lett. 2010; 12: 1084
- 9p Li J.-H, Du D.-M. Adv. Synth. Catal. 2015; 357: 3986
- 9q Vagh SS, Hou B.-J, Edukondalu A, Wang P.-C, Lin W. Org. Lett. 2021; 23: 842
- 9r Huang Y, Liao J, Wang W, Liu H, Guo H. Chem. Commun. 2020; 56: 15235
- 9s Pinto N, Retailleau P, Voituriez A, Marinetti A. Chem. Commun. 2011; 47: 1015
- 9t Neel M, Gouin J, Voituriez A, Marinetti A. Synthesis 2011; 2003
- 9u Xie C, Smaligo AJ, Song X.-R, Kwon O. ACS Cent. Sci. 2021; 7: 536
- 10a He F, Shen G, Yang X. Chin. J. Chem. 2022; 40: 15
- 10b Reddy CR, Kolgave DH. J. Org. Chem. 2021; 86: 17071
- 10c Sun Y.-L, Wei Y, Shi M. Adv. Synth. Catal. 2017; 359: 3176
- 10d Lian Z, Shi M. Org. Biomol. Chem. 2012; 10: 8048
- 10e Lian Z, Wei Y, Shi M. Tetrahedron 2012; 68: 2401
- 10f Liang L, Li E, Xie P, Huang Y. Chem. Asian J. 2014; 9: 1270
- 10g Liang L, Huang Y. Org. Lett. 2016; 18: 2604
- 10h Zhang K, Cai L, Hong S, Kwon O. Org. Lett. 2019; 21: 5143
- 10i Gao X, Li Z, Yang W, Liu Y, Chen W, Zhang C, Zheng L, Guo H. Org. Biomol. Chem. 2017; 15: 5298
- 10j Li Z, Yu H, Liu Y, Zhou L, Sun Z, Guo H. Adv. Synth. Catal. 2016; 358: 1880
- 10k Deng Z.-X, Xie Z.-Z, Zheng Y, Xiao J.-A, Wang R.-J, Xiang H.-Y, Yang H. Org. Biomol. Chem. 2019; 17: 2187
- 10l Khong SN, Kwon O. Molecules 2012; 17: 5626
- 10m Zhang Y, Sun Y, Wei Y, Shi M. Adv. Synth. Catal. 2019; 361: 2129
- 10n Vagh SS, Hou B.-J, Edukondalu A, Wang P.-C, Lin W. Org. Lett. 2021; 23: 842
- 10o Deng Z.-X, Xie Z.-Z, Zheng Y, Xiao J.-A, Wang R.-J, Xiang H.-Y, Yang H. Org. Biomol. Chem. 2019; 17: 2187
- 10p Zhang K, Cai L, Hong S, Kwon O. Org. Lett. 2019; 21: 5143
- 11a Li Y, Yu J, Bi Y, Yan G, Huang D. Adv. Synth. Catal. 2019; 361: 4839
- 11b Wang Z, Wang K.-K, Chen R, Liu H. Chen K. 2020; 2456
- 11c Nájera C, Sydnes LK, Yus M. Chem. Rev. 2019; 119: 11110
- 11d Whittaker RE, Dermenci A, Dong G. Synthesis 2016; 48: 161
- 11e Gers-Panther CF, Müller TJ. J. Adv. Heterocycl. Chem. 2016; 120: 67
- 11f Zhang J, Abudukeremu M, Miao Z. Chin. J. Org. Chem. 2017; 37: 2859
- 11g Abbiati G, Arcadi A, Marinelli F, Rossi E. Synthesis 2014; 46: 687
- 11h Wang L, Zhu H, Peng T, Yang D. Org. Biomol. Chem. 2021; 19: 2110
- 12a Wang X, Sun K. Chin. J. Appl. Chem. 2017; 534
- 12b Han T, Wang K.-H, Yang M, Zhao P, Wang F, Wang J, Huang D, Hu Y. Org. Lett. 2022; 87: 498
- 12c Huang H, Wang H, Gong C, Zhuang Z, Feng W, Wu S.-H, Wang L. Org. Chem. Front. 2022; 9: 413
- 12d Shi F, Luo S.-W, Tao Z.-L, He L, Yu J, Tu S.-J, Gong L.-Z. Org. Lett. 2011; 13: 4680
- 13 Fu J, Takia IR. T, Chen P, Liu W, Jiang C, Yao W, Zeng X, Wang Y, Han X. Org. Chem. Front. 2021; 8: 6323
- 14 CCDC 2153490 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 15 CCDC 2153492 contains the supplementary crystallographic data for compound 4a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
For recent reviews, see:
For recent reviews, see: