Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(02): 133-136
DOI: 10.1055/s-0041-1738427
DOI: 10.1055/s-0041-1738427
letter
A Synthesis of Furan-2-iminophosphoranes under Appel-Type Reaction Conditions
We are grateful to the Research Council of Tarbiat Modares University and Iran’s National Elites Foundation for supporting this work.
Abstract
Phenacylmalononitriles reacted with triphenylphosphine and carbon tetrachloride in an Appel-type, cyclization/aromatization reaction to afford 5-aryl-2-[(triphenylphosphoranylidene)amino]-3-furonitriles in yields of 75–92%. The reaction proceeded smoothly in the presence of excess amounts of Ph3P and CCl4 without any base or catalyst at room temperature. The structure of one product was confirmed by X-ray crystallographic analysis.
Key words
Appel reaction - iminophosphoranes - triphenylphosphine - furanimines - acylmalononitrilesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738427.
- Supporting Information
Publication History
Received: 24 May 2022
Accepted after revision: 18 September 2022
Article published online:
16 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Johnson AW. Ylides and Imines of Phosphorus . Wiley; New York: 1993
- 1b Quin LD. A Guide to Organophosphorus Chemistry . Wiley; New York: 2000
- 1c Xu S, He Z. RSC Adv. 2013; 3: 16885
- 1d Karanam P, Reddy GM, Koppolu SR, Lin W. Tetrahedron Lett. 2018; 59: 59
- 2a Wittig G, Rieber M. Liebigs Ann. Chem. 1949; 562: 177
- 2b Wittig G, Schöllkopf U. Chem. Ber. 1954; 87: 1318
- 2c Wittig G, Werner H. Chem. Ber. 1955; 88: 1654
- 2d Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
- 3a Lao Z, Toy PH. Beilstein J. Org. Chem. 2016; 12: 2577
- 3b Cai L, Zhang K, Chen S, Lepage RJ, Houk KN, Krenske EH, Kwon O. J. Am. Chem. Soc. 2019; 141: 9537
- 3c Tukhtaev HB, Ivanov KL, Bezzubov SI, Cheshkov DA, Melnikov MY, Budynina EM. Org. Lett. 2019; 21: 1087
- 3d Ismailani US, Munch M, Mair BA, Rotstein BH. Chem. Commun. 2021; 57: 5266
- 4a Wolkoff P. Can. J. Chem. 1975; 53: 1333
- 4b Shipilovskikh SA, Vaganov VY, Denisova EI, Rubtsov AE, Malkov AV. Org. Lett. 2018; 20: 728
- 4c Chen J, Lin J.-H, Xiao J.-C. Org. Lett. 2018; 20: 3061
- 4d Longwitz L, Jopp S, Werner T. J. Org. Chem. 2019; 84: 7863
- 4e Yavari I, Khaledian O. Chem. Commun. 2020; 56: 9150
- 5 Fletcher S. Org. Chem. Front. 2015; 2: 739
- 6a van Berkel SS, van Eldijk MB, van Hest JC. M. Angew. Chem. Int. Ed. 2011; 50: 8806
- 6b Meguro T, Terashima N, Ito H, Koike Y, Kii I, Yoshida S, Hosoya T. Chem. Commun. 2018; 54: 7904
- 6c Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
- 6d Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. Chem. Rev. 2020; 120: 4301
- 7a Kirsanov AV. Russ. Chem. Bull. 1954; 3: 551
- 7b Saplinova T, Lehnert C, Böhme U, Wagler J, Kroke E. New J. Chem. 2010; 34: 1893
- 8a Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos J. Tetrahedron 2007; 63: 523
- 8b Hajos G, Nagy I. Curr. Org. Chem. 2008; 12: 39
- 8c Palacios F, Aparicio D, Rubiales G, Alonso C, de los Santos JM. Curr. Org. Chem. 2009; 13: 810
- 9a Molina P, Alajarin M, Vidal A. Tetrahedron 1990; 46: 1063
- 9b Molina P, Alajarin M, Vidal A, Sanchez-Andrada P. J. Org. Chem. 1992; 57: 929
- 9c Molina P, Vilaplana MJ. Synthesis 1994; 1197
- 9d Fresneda PM, Molina P. Synlett 2004; 1
- 9e Lorenzo Á, Aller E, Molina P. Tetrahedron 2009; 65: 1397
- 10a Yang J, Farley AJ. M, Dixon D. Chem. Sci. 2017; 8: 606
- 10b Formica M, Sorin G, Farley AJ, Díaz J, Paton RS, Dixon D. Chem. Sci. 2018; 9: 6969
- 10c Formica M, Rozsar D, Su G, Farley AJ, Dixon DJ. Acc. Chem. Res. 2020; 53: 2235
- 10d Das S, Hu Q, Kondoh A, Terada M. Angew. Chem. Int. Ed. 2021; 60: 1417
- 11a Bézier D, Daugulis O, Brookhart M. Organometallics 2017; 36: 2947
- 11b Lv C, Zhou L, Yuan R, Mahmood Q, Xu G, Wang Q. New J. Chem. 2020; 44: 1648
- 12a Rodríguez-Álvarez MJ, Vidal C, Schumacher S, Borge J, García-Álvarez J. Chem. Eur. J. 2017; 23: 3425
- 12b Cheisson T, Ricard L, Heinemann FW, Meyer K, Auffrant A, Nocton G. Inorg. Chem. 2018; 57: 9230
- 12c Mazaud L, Tricoire M, Bourcier S, Cordier M, Gandon V, Auffrant A. Organometallics 2020; 39: 719
- 13 Abdelhamid AO, Negm AM, Abbas IM. J. Prakt. Chem. 1989; 331: 31
- 14 5-Phenyl-2-[(triphenylphosphoranylidene)amino]-3-furonitrile (2a); Typical Procedure CCl4 (461 mg, 3 equiv) was added dropwise to a reaction flask containing phenacylmalononitrile (1a; 184 mg, 1 equiv) and Ph3P (657 mg, 2.5 equiv) in MeCN (6 mL). The flask was sealed and the mixture was stirred at r.t. (25 ℃) until the reaction was complete [~4 h; TLC, hexane–EtOAc (3:1)]. The mixture was then filtered, and the precipitate was washed with EtOH to give a pale-yellow solid; yield: 408 mg (92%); mp 203–205 °C. (In cases where no precipitate was formed, the reaction flask was scratched and placed in a freezer at –18 ℃; after 24 h, crystals of the product were collected by filtration and washed with a sufficient amount of cold MeCN.) IR (KBr): 2207 (CN), 1504 (C=C), 1288 (P=N), 1112 (C–O) cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.54 (br s, 1 H, CH), 7.05–7.08 (m, 3 H, Ar), 7.17–7.20 (m, 2 H, Ar), 7.50–7.53 (m, 6 H, PPh3), 7.59–7.62 (m, 3 H, PPh3), 7.80 (dd, 3 J H–H = 8.0 Hz, 3 J P–H = 12.5 Hz, 6 H, PPh3). 13C NMR (125 MHz, CDCl3): δ = 77.4 (C–CN), 106.7 (CH of furan), 118.2 (CN), 122.3 (2 CH of Ph), 126.1 (CH of Ph), 128.6 (2 CH of Ph), 128.8 (d, 1 J P–C = 103.4 Hz, PPh3), 129.1 (d, 3 J P–C = 12.5 Hz, PPh3), 130.5 (s, CH of Ph), 132.7 (d, 4 J P–C = 2.4 Hz, PPh3), 132.8 (d, 2 J P–C = 10.6 Hz, PPh3), 142.9 (C-5 of furan), 164.7 (d, 2 J P–C = 5.5 Hz, C–N=P). 31P NMR (202 MHz, CDCl3): δ = 14.14 (Ph3P=N). EI-MS: m/z (%) = 445 [M + 1]+ (10), 444 [M+] (32), 279 (10), 262 (100), 183 (58), 108 (37), 77 (2). Anal. Calcd for C29H21N2OP (444.47): C, 78.37; H, 4.76; N, 6.30. Found: C, 78.08; H, 4.74; N, 6.32.
- 15 CCDC 1996238 contains the supplementary crystallographic data for compound 2c. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures