Subscribe to RSS
DOI: 10.1055/s-0041-1738429
Microwave-Assisted Domino Povarov-Type [4+2] Cycloaddition: A Rapid Access to 7-Phenyl-6H-chromeno[4,3-b]quinolines
We greatly acknowledge financial support from the Department of Science and Technology, Science and Engineering Research Board (DST-SERB, Grant EMR/2017/005312), New Delhi. D.R.K. and K.G. gratefully acknowledge the University Grants Commission (UGC), while K.M. and J.N. acknowledge the Council of Scientific and Industrial Research, India (CSIR) for providing a fellowship.
![](https://www.thieme-connect.de/media/synthesis/202305/lookinside/thumbnails/ss-2022-m0388-op_10-1055_s-0041-1738429-1.jpg)
Abstract
A convenient, facile, and eco-friendly approach to synthesizing 7-phenyl-6H-chromeno[4,3-b]quinolines under microwave irradiation is presented. The current strategy enabled the synthesis of chromenoquinoline frameworks at 80 °C under shorter reaction times via intermolecular Schiff base formation followed by an intramolecular inverse demand hetero-Diels–Alder [4+2]-cycloaddition reaction by using a catalytic amount of copper triflate as the sole catalyst. Consequently, one C–N and two C–C bonds are constructed in a single pot, and a wide spread of 7-phenyl-6H-chromeno[4,3-b]quinolines have been synthesized with good functional group tolerance.
Key words
Povarov-type reaction - cycloaddition - Schiff bases - microwave irradiation - copper triflate catalysis - chromenoquinolinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738429.
- Supporting Information
- CIF File
Publication History
Received: 05 August 2022
Accepted after revision: 10 November 2022
Article published online:
15 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Briou B, Améduri B, Boutevin B. Chem. Soc. Rev. 2021; 50: 11055
- 2 Wessig P, Müller G. Chem. Rev. 2008; 108: 2051
- 3 Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
- 4 Knall A.-C, Slugovc C. Chem. Soc. Rev. 2013; 42: 5131
- 5 Pagel M. J. Pept. Sci. 2019; 25: e3141
- 6 Gao Q, Liu S, Wu X, Wu A. Org. Lett. 2014; 16: 4582
- 7 Adolfsson DE, Tyagi M, Singh P, Deuschmann A, Ådén J, Gharibyan AL, Jayaweera SW, Lindgren AE. G, Olofsson A, Almqvist F. J. Org. Chem. 2020; 85: 14174
- 8 Almansour AI, Arumugam N, Suresh Kumar R, Carlos Menéndez J, Ghabbour HA, Fun H.-K, Ranjith Kumar R. Tetrahedron Lett. 2015; 56: 6900
- 9 Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463
- 10 Weyesa A, Mulugeta E. RSC Adv. 2020; 10: 20784
- 11 Matada BS, Pattanashettar R, Yernale NG. Bioorg. Med. Chem. 2021; 32: 115973
- 12 Abass M, Alzandi AR. A, Hassan MM, Mohamed N. Polycyclic Aromat. Compd. 2021; 41: 2120
- 13 Anzini M, Cappelli A, Vomero S, Giorgi G, Langer T, Hamon M, Merahi N, Emerit BM, Cagnotto A, Skorupska M, Mennini T, Pinto JC. J. Med. Chem. 1995; 38: 2692
- 14 Hegab MI, Abdel-Fattah A.-SM, Yousef NM, Nour HF, Mostafa AM, Ellithey M. Arch. Pharm. Chem. Life Sci. 2007; 340: 396
- 15 Jida M, Deprez B. New J. Chem. 2012; 36: 869
- 16 Keskin S, Balci M. Org. Lett. 2015; 17: 964
- 17 Rahimzadeh G, Soheilizad M, Kianmehr E, Larijani B, Mahdavi M. ARKIVOC 2018; (v): 20
- 18 Gómez AP, Galvis CE. P, Macías MA, Ochoa-Puentes C, Kouznetsov VV. Synthesis 2022; 54: 1857
- 19 Dong W, Yuan Y, Gao X, Hu B, Xie X, Zhang Z. ChemCatChem 2018; 10: 2878
- 20 Aradi K, Bombicz P, Novák Z. J. Org. Chem. 2016; 81: 920
- 21 Ramesh S, Gaddam V, Nagarajan R. Synlett 2010; 757
- 22 Yu X, Wang J, Xu Z, Yamamoto Y, Bao M. Org. Lett. 2016; 18: 2491
- 23 Tomashevskaya MM, Tomashenko OA, Tomashevskii AA, Sokolov VV, Potekhin AA. Russ. J. Org. Chem. 2007; 43: 77
- 24 Karu R, Gedu S. Green Chem. 2018; 20: 369
- 25 Nandi P, Goel K, Sreenivasulu C, Satyanarayana G. Eur. J. Org. Chem. 2021; 4851
- 26 Ramesh K, Basuli S, Satyanarayana G. Eur. J. Org. Chem. 2018; 2171
- 27 Ramesh K, Satyanarayana G. Eur. J. Org. Chem. 2019; 3856
- 28 Wittstein K, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 9076
- 29 Muthukrishnan I, Vinoth P, Vivekanand T, Nagarajan S, Maheswari CU, Menéndez JC, Sridharan V. J. Org. Chem. 2016; 81: 1116
- 30 Vedachalam S, Wong Q.-L, Maji B, Zeng J, Ma J, Liu X.-W. Adv. Synth. Catal. 2011; 353: 219
- 31 Betori RC, McDonald BR, Scheidt KA. Chem. Sci. 2019; 10: 3353
- 32 CCDC 2178404 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 33 Martín-Acosta P, Feresin G, Tapia A, Estévez-Braun A. J. Org. Chem. 2016; 81: 9738
- 34 Biju AT, Wurz NE, Glorius F. J. Am. Chem. Soc. 2010; 132: 5970
- 35 Saini MK, Korawat HS, Verma SK, Basak AK. Tetrahedron Lett. 2020; 61: 152657