Synthesis 2023; 55(15): 2353-2360
DOI: 10.1055/s-0041-1738430
paper
Special Issue dedicated to Prof. David A. Evans

Synthesis of N-Acylsulfenamides from Amides and N-Thiosuccinimides

Jessica T. Liu
,
,
Nathaniel S. Greenwood
,
This work was supported by NIH Grant R35GM122473 (to J.A.E.). J.T.L. was funded by the Yale College First-Year Summer Research Fellowship in the Sciences and Engineering. D.S.B. acknowledges the Berson Graduate Research Fellowship in Chemistry for financial support. N.S.G. gratefully acknowledges the support of the National Science Foundation Graduate Research Fellowship Program.


This work is dedicated to the memory of David A. Evans for his commitment and lasting contributions to research and teaching.

Abstract

Herein is reported a robust and general method for the preparation of N-acylsulfenamides, important functionalities that have recently been utilized as central inputs for the asymmetric synthesis of high oxidation state sulfur compounds. This straightforward transformation proceeds by reaction of primary amides, carbamates, sulfonamides, sulfinamides, and ureas with stable N-thiosuccinimides or N-thiophthalimides, which in turn are prepared in a single step from commercial thiols. The use of stable N-thiosuccinimide and N-thiophthalimide reactants is desirable because it obviates the use of highly reactive sulfenyl chlorides.

Supporting Information



Publication History

Received: 26 October 2022

Accepted after revision: 22 November 2022

Article published online:
20 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Craine L, Raban M. Chem. Rev. 1989; 89: 689
    • 1b Koval IV. Russ. Chem. Rev. 1996; 65: 421
    • 1c Cao Y, Abdolmohammadi S, Ahmadi R, Issakhov A, Ebadi AG, Vessally E. RSC Adv. 2021; 11: 32394
  • 2 Greenwood NS, Champlin AT, Ellman JA. J. Am. Chem. Soc. 2022; 144: 17808
  • 3 Ma L, Bai L, Yu Z, Shen Q. Chirality 2022; 34: 1191
    • 4a Behforouz M, Kerwood JE. J. Org. Chem. 1969; 34: 51
    • 4b Harpp DN, Mullins DF, Steliou K, Triassi I. J. Org. Chem. 1979; 44: 4196
    • 4c Koval IV, Tarasenko AI, Kremlev MM, Molchanova NR. Zh. Org. Khim. 1981; 17: 533
    • 4d Miura Y, Shibata Y, Kinoshita M. Bull. Chem. Soc. Jpn. 1986; 59: 3291
    • 4e Perrio S, Reboul V, Metzner P. In Science of Synthesis., Vol. 31a. Ramsden CA. Georg Thieme Verlag; Stuttgart: 2007: 1041
    • 4f Ma L.-J, Chen S.-S, Li G.-X, Zhu J, Wang Q.-W, Tang Z. ACS Catal. 2019; 9: 1525
    • 5a Chen Q, Shen M, Tang Y, Li C. Org. Lett. 2005; 7: 1625
    • 5b Zhang X.-S, Zhang X.-H. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 89
  • 6 Musiejuk M, Witt D. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 305
    • 7a Bao M, Shimizu M, Shimada S, Tanaka M. Tetrahedron 2003; 59: 303
    • 7b Wang H, Xian M. Angew. Chem. Int. Ed. 2008; 47: 6598
    • 7c Nasab FA. H, Fekri LZ, Monfared A, Hosseini A, Vessally E. RSC Adv. 2018; 8: 18456
  • 8 Bai Z, Zhu S, Hu Y, Yang P, Chu X, He G, Wang H, Chen G. Nat. Commun. 2022; 13: 6445
  • 9 Dodds AC, Sutherland A. J. Org. Chem. 2021; 86: 5922
    • 10a Harpp DN, Back TG. Tetrahedron Lett. 1971; 12: 4953
    • 10b Harpp DN, Back TG. J. Org. Chem. 1976; 41: 2498
    • 10c Liu Y, Xu Y, Zhang Y, Gao W.-C, Shao X. Org. Chem. Front. 2022; 9: 6490
  • 11 Guarino VR, Olson RE, Everlof JG, Wang N, McDonald I, Haskell R, Clarke W, Lentz KA. Bioorg. Med. Chem. Lett. 2020; 30: 126856
  • 12 Backes BJ, Dragoli DR, Ellman JA. J. Org. Chem. 1999; 64: 5472
  • 13 Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Adv. Synth. Catal. 2021; 363: 1955
  • 14 Kesavan A, Anbarasan P. Chem. Commun. 2022; 58: 282
  • 15 Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2002; 4: 4309