Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(15): 1791-1794
DOI: 10.1055/s-0041-1738438
DOI: 10.1055/s-0041-1738438
letter
A New Approach to the S–H Insertion Reaction of α-Keto Esters and Thiols
This work was financially supported by the Fundamental Research Program of Shanxi Province (Grant No. 20210302123016) and the Applied Basic Research Project of Shanxi Province (Grant No. 201901D211220).
Abstract
Sulfur-containing compounds are well known for their frequent occurrence in a large number of natural and synthetic molecules with relevant biological activity. An easy and highly efficient approach to sulfur-containing compounds, by S–H insertion reactions of α-keto esters with thiols, is reported. The substrate scope was remarkably wide, affording the corresponding products in up to 97% yield. Overall, the raw materials were readily available and the reaction conditions were mild in this synthetic method.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738438.
- Supporting Information
Publication History
Received: 06 March 2023
Accepted after revision: 12 April 2023
Article published online:
12 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Sobal G, Menzel EJ, Sinzinger H. Biochem. Pharmacol. 2001; 61: 373
- 1b Halama A, Jirman J, Boušková O, Gibala P, Jarrah K. Org. Process Res. Dev. 2010; 14: 425
- 1c Clayden J, MacLellan P. Beilstein J. Org. Chem. 2011; 7: 582
- 1d Suhas R, Chandrashekar S, Gowda DC. Eur. J. Med. Chem. 2012; 48: 179
- 1e Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
- 1f Zhang Z, Dai Z, Jiang X. Asian J. Org. Chem. 2016; 5: 52
- 1g Fukaya M, Nakamura S, Nakagawa R, Kinka M, Nakashima S, Matsuda H. J. Nat. Med. 2019; 73: 397
- 1h Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
- 1i Shen D, Hensley K, Denton TT. Anal. Biochem. 2020; 591: 113543
- 2 Xu B, Zhu SF, Zhang ZC, Yu ZX, Ma Y, Zhou QL. Chem. Sci. 2014; 5: 1442
- 3a Thieme TM, Steri R, Proschak E, Paulke A, Schneider G, Schubert-Zsilavecz M. Bioorg. Med. Chem. Lett. 2010; 20: 2469
- 3b Hieke M, Greiner C, Thieme TM, Schubert-Zsilavecz M, Werz O, Zettl H. Bioorg. Med. Chem. Lett. 2011; 21: 1329
- 4a Zhang YZ, Zhu SF, Cai Y, Mao HX, Zhou QL. Chem. Commun. 2009; 5362
- 4b Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
- 4c Shiri L, Ghorbani-Choghamarani A, Kazemi M. Aust. J. Chem. 2016; 69: 585
- 4d Li L, Ding Y. Mini-Rev. Org. Chem. 2017; 14: 407
- 4e Wu R, Huang K, Qiu G, Liu JB. Synthesis 2019; 51: 3567
- 5a Keipour H, Jalba A, Delage-Laurin L, Ollevier T. J. Org. Chem. 2017; 82: 3000
- 5b Keipour H, Jalba A, Tanbouza N, Carreras V, Ollevier T. Org. Biomol. Chem. 2019; 17: 3098
- 5c Tanbouza N, Keipour H, Ollevier T. RSC Adv. 2019; 9: 31241
- 6 Bernardim B, Couch ED, Hardman-Baldwin AM, Burtoloso AC. B, Mattson AE. Synthesis 2016; 48: 677
- 7 Yi X, Feng J, Huang F, Baell JB. Chem. Commun. 2020; 56: 1243
- 8a Sreenilayam G, Moore EJ, Steck V, Fasan R. Adv. Synth. Catal. 2017; 359: 2076
- 8b Chen K, Zhang SQ, Brandenberg OF, Hong X, Arnold FH. J. Am. Chem. Soc. 2018; 140: 16402
- 9 Yan K, He H, Li J, Luo Y, Lai R, Guo L, Wu Y. Chin. Chem. Lett. 2021; 32: 3984
- 10 Huang T, Liu L, Wang QH, Kong DL, Wu MS. Synthesis 2020; 52: 2689
- 11a Ramirez F. Acc. Chem. Res. 1968; 1: 168
- 11b Nifantiev EE, Grachev MK, Burmistrov SY. Chem. Rev. 2000; 100: 3755
- 11c Osman FH, El-Samahy FA. Chem. Rev. 2002; 102: 629
- 12a Fauduet H, Burgada R. Synthesis 1980; 642
- 12b Zhou R, Yang CJ, Liu YY, Li RF, He ZJ. J. Org. Chem. 2014; 79: 10709
- 12c Wilson EE, Rodriguez KX, Ashfeld BL. Tetrahedron 2015; 71: 5765
- 12d Jiang J, Liu H, Lu CD, Xu YJ. J. Org. Chem. 2017; 82: 811
- 12e Tan PW, Wang HR, Wang SR. Org. Lett. 2021; 23: 2590
- 13a Zhou R, Zhang K, Chen YS, Meng Q, Liu YY, Li RF, He ZJ. Chem. Commun. 2015; 51: 14663
- 13b Rodriguez KX, Vail JD, Ashfeld BL. Org. Lett. 2016; 18: 4514
- 13c Zhou R, Zhang K, Han L, Chen YS, Li RF, He ZJ. Chem. Eur. J. 2016; 22: 5883
- 13d Eckert KE, Ashfeld BL. Org. Lett. 2018; 20: 2315
- 13e Liu RF, Liu JL, Cao JL, Li RF, Zhou R, Qiao Y, Gao WC. Org. Lett. 2020; 22: 6922
- 14 Wang SR, Radosevich AT. Org. Lett. 2013; 15: 1926
- 15a Miller EJ, Zhao W, Herr JD, Radosevich AT. Angew. Chem. Int. Ed. 2012; 51: 10605
- 15b Zhao W, Fink DM, Labutta CA, Radosevich AT. Org. Lett. 2013; 15: 3090
- 15c Zhao W, Yan PK, Radosevich AT. J. Am. Chem. Soc. 2015; 137: 616
- 15d Liu Y, Sun F, He Z. Tetrahedron Lett. 2018; 59: 4136
- 16 General procedure: P(NMe2)3 (0.15 mmol) was added to a solution of α-keto ester (2, 0.1 mmol) in dry DCM (0.5 mL) at –78 °C, and the resulting mixture was stirred for 5 min at the same temperature. Thiol (1, 0.1 mmol) was then added to the above solution at –78 °C. After being stirred for 5 min at –78 °C, the mixture was left to stir at room temperature for 8 h. After the reaction had finished, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (petroleum ether/ethyl acetate = 15:1 or 10:1) to afford the desired product 3, which was analyzed with 1H NMR and 13C NMR spectroscopy (see Supporting Information). Typical data for representative compound 3aa: Rf = 0.30 (petroleum ether/ethyl acetate = 10:1), colorless oil (26.4 mg, 97% yield). 1H NMR (600 MHz, CDCl3) δ = 7.45 (d, J = 7.2 Hz, 2 H), 7.39–7.37 (m, 2 H), 7.35–7.29 (m, 3 H), 7.28–7.24 (m, 3 H), 4.90 (s, 1 H), 4.18–4.07 (m, 2 H), 1.16 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 170.6, 135.7, 133.9, 132.7, 129.1, 128.8, 128.6, 128.4, 128.1, 61.9, 56.4, 14.1. HRMS (ESI): m/z calcd for C16H16O2SNa [M + Na]+: 295.0763; found: 295.0769.