RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2023; 55(23): 3969-3980
DOI: 10.1055/s-0041-1738453
DOI: 10.1055/s-0041-1738453
paper
Rhodium-Catalyzed Regioselective Synthesis of N-Secondary Alkyl Indoles via Intermolecular Cyclization of N-Nitrosoanilines and Unsymmetrical Alkynes
We gratefully acknowledge the National Natural Science Foundation of China (22077141), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1-026 and 2022-I2M-JB-011), Beijing Outstanding Young Scientist Program (BJJWZYJH01201910023028), Guizhou Medical University (FAMP202003K), and Guizhou Science and Technology Platform Talents (QKHRCPT [2019]5106).
Abstract
A Cp*Rh-catalyzed C–H functionalization/cyclization to afford 2,3-substituted N-secondary alkyl indole derivatives is described. This intermolecular cyclization of N-secondary nitrosoanilines and unsymmetrically substituted alkynes has good performances in yields, substrate scope, and regioselectivities.
Key words
regioselective synthesis - N-secondary alkyl indoles - intermolecular cyclization - N-nitrosoanilines - unsymmetrical alkynesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738453.
- Supporting Information
Publikationsverlauf
Eingereicht: 30. Juni 2023
Angenommen nach Revision: 16. August 2023
Artikel online veröffentlicht:
21. September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Sravanthi TV, Manju SL. Eur. J. Pharm. Sci. 2016; 91: 1
- 1b Singh AK, Raj V, Saha S. Eur. J. Med. Chem. 2017; 142: 244
- 1c Wan Y, Li Y, Yan C, Yan M, Tang Z. Eur. J. Med. Chem. 2019; 183: 111691
- 1d Dorababu A. RSC Med. Chem. 2020; 11: 1335
- 1e Chauhan M, Saxena A, Saha B. Eur. J. Med. Chem. 2021; 218: 113400
- 1f Zhu Y, Zhao J, Luo L, Gao Y, Bao H, Li P, Zhang H. Eur. J. Med. Chem. 2021; 223: 113665
- 2a Iwata Y, Arisawa M, Hamada R, Kita Y, Mizutani MY, Tomioka N, Itai A, Miyamoto S. J. Med. Chem. 2001; 44: 1718
- 2b Dinnel K, Chicchi GG, Dhar MJ, Elliott JM, Hollingworth GJ, Kurtz MM, Ridgill MP, Rycroft W, Tsao K.-L, Williams AR, Swain CJ. Bioorg. Med. Chem. Lett. 2001; 11: 1237
- 2c Beaulieu PL, Gillard J, Bykowski D, Brochu C, Dansereau N, Duceppe J.-S, Haché B, Jakalian A, Lagacé L, LaPlante S, McKercher G, Moreau E, Perreault S, Stammers T, Thauvette L, Warrington J, Kukolj G. Bioorg. Med. Chem. Lett. 2006; 16: 4987
- 2d Aksenov AV, Smirnov AN, Magedov IV, Reisenauer MR, Aksenov NA, Aksenova IV, Pendleton AL, Nguyen G, Johnston RK, Rubin M, De Carvalho A, Kiss R, Mathieu V, Lefranc F, Correa J, Cavazos DA, Brenner AJ, Bryan BA, Rogelj S, Kornienko A, Frolova LV. J. Med. Chem. 2015; 58: 2206
- 2e Zhang N, Turpoff A, Zhang X, Huang S, Liu Y, Almstead N, Njoroge FG, Gu Z, Graci J, Jung SP, Pichardo J, Colacino J, Lahser F, Ingravallo P, Weetall M, Nomeir A, Karp GM. Bioorg. Med. Chem. Lett. 2016; 26: 594
- 3a Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
- 3b Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
- 3c Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215
- 3d Vicente R. Org. Biomol. Chem. 2011; 9: 6469
- 3e Platon M, Amardeil R, Djakovitch L, Hierso J.-C. Chem. Soc. Rev. 2012; 41: 3929
- 3f Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
- 3g Neto JS. S, Zeni G. Org. Chem. Front. 2020; 7: 155
- 3h Neto JS. S, Zeni G. Org. Biomol. Chem. 2020; 18: 4906
- 4a Youn SW, Ko TY. Asian J. Org. Chem. 2018; 7: 1467
- 4b Shang Y, Jonnada K, Yedage SL, Tu H, Zhang X, Lou X, Huang S, Su W. Chem. Commun. 2019; 55: 9547
- 4c Shi Y, Xing H, Huang T, Liu X, Chen J, Guo X, Li G.-B, Wu Y. Chem. Commun. 2020; 56: 1585
- 5a Liu B, Song C, Sun C, Zhou S, Zhu J. J. Am. Chem. Soc. 2013; 135: 16625
- 5b Wang C, Huang Y. Org. Lett. 2013; 15: 5294
- 5c Zhou B, Yang Y, Tang H, Du J, Feng H, Li Y. Org. Lett. 2014; 16: 3900
- 5d Liang Y, Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
- 5e Song X, Gao C, Li B, Zhang X, Fan X. J. Org. Chem. 2018; 83: 8509
- 5f Wang H, Li S, Wang B, Li B. Org. Chem. Front. 2018; 5: 88
- 5g Chen X, Cui X, Wang Y, Xie Y, Wang S, Zhai R, Zhao K, Kong D, Li Y. Asian J. Org. Chem. 2019; 8: 2209
- 6a Zhao D, Shi Z, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12426
- 6b Muralirajan K, Cheng C.-H. Adv. Synth. Catal. 2014; 356: 1571
- 6c Zheng L, Hua R. Chem. Eur. J. 2014; 20: 2352
- 6d Lerchen A, Vásquez-Céspedes S, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
- 6e Zhou S, Wang J, Wang L, Chen K, Song C, Zhu J. Org. Lett. 2016; 18: 3806
- 6f Zhou S, Wang J, Zhang F, Song C, Zhu J. Org. Lett. 2016; 18: 2427
- 7 Zhao G, Zhu M, Provot O, Alami M, Messaoudi S. Org. Lett. 2020; 22: 57
- 8 Zhou S, Wang J, Chen P, Chen K, Zhu J. Chem. Eur. J. 2016; 22: 14508
For recent reviews on biological indole derivatives, see:
For selected examples on synthesis of indoles by using N–N bond as an internal oxidant, see: