RSS-Feed abonnieren

DOI: 10.1055/s-0041-1740095
Intraosseous Suture Abrasion according to the Angle of the Transosseous Tunnel in Rotator Cuff Footprint
Artikel in mehreren Sprachen: español | English
Resumen
Objetivo Comparar el desgaste óseo generado por la abrasión de una carga cíclica entre túneles clásicos oblicuos y perpendiculares. Nuestra hipótesis es la de que el túnel oblicuo presenta un menor desgaste óseo por abrasión cíclica comparado con el túnel perpendicular.
Métodos Ocho hombros congelados de cordero fueron usados para el estudio biomecánico. En cada húmero proximal, dos túneles (oblicuo y perpendicular) fueron generados en la tuberosidad mayor. Se utilizó un sistema de tracción cíclica para traccionar hacia atrás y adelante una sutura trenzada en tensión a través del túnel, midiendo la distancia entre la entrada y la salida de la sutura en el túnel antes y después del proceso de ciclado como medida de perdida de tensión de la sutura. El resultado principal es el cambio de la distancia entre la entrada y la salida de la sutura en el túnel después del ciclado para estimar el desgaste óseo dentro del túnel. Para el análisis estadístico, se utilizó la prueba U de Mann-Whitney. Se consideraron significativos valores de p < 0,05.
Resultados Los túneles perpendiculares tuvieron un 23,24 ± 7,44% de pérdida de longitud, y los túneles oblicuos, 7,76 ± 4,32%. La diferencia de pérdida de longitud fue significativa (p = 0,0003).
Conclusión La abrasión ósea generada por el movimiento cíclico de la sutura en el túnel transóseo está influenciada por la geometría del túnel. El desgaste óseo es menor en un túnel oblicuo comparado con un túnel perpendicular.
Nivel de Evidencia Estudio de ciencia básica.
Abstract
Objective To compare the bone wear generated by the abrasion of a cyclic load between classic oblique and perpendicular tunnels. Our hypothesis is that the oblique tunnel is submitted to less cyclic abrasion bone wear compared with the perpendicular tunnel.
Methods Eight fresh-frozen lamb shoulders were used for biomechanical testing. In each proximal humerus, two tunnels (one oblique and one perpendicular) were drilled at the greater tuberosity. We used a cyclic traction system to pull back and forth a braided suture under tension through the tunnel, measuring the distance between the entry and exit points of the suture within the tunnel before and after the cyclic process to release the tension in the suture. The main outcome was the percentage of change in the distance between the entry and exit points of the suture within the tunnel before and after cyclic abrasion to estimate the degree of bone wear inside the tunnel. For the statistical analysis, the Mann-Whitney U test was used. Values of p < 0.05 were considered significant.
Results The perpendicular bone tunnels had 23.24 ± 7.44% decrease in length, and the oblique bone tunnels, 7.76 ± 4.32%. The difference in the decrease in length was significant (p = 0.0003).
Conclusion The bone abrasion caused by the cyclical movement of the suture in the bone tunnel was influenced by the shape of the tunnel. Bone wear was lower with an oblique tunnel compared with a perpendicular tunnel.
Level of Evidence Basic Science Study.
Keywords
rotator cuff - suture - suture techniques - tendon injuries - tendons - bone tunnel wear - suture abrasion - cyclic abrasionPublikationsverlauf
Eingereicht: 28. August 2020
Angenommen: 06. August 2021
Artikel online veröffentlicht:
22. Dezember 2021
© 2021. Sociedad Chilena de Ortopedia y Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referencias
- 1 Reilly P, Macleod I, Macfarlane R, Windley J, Emery RJ. Dead men and radiologists don't lie: a review of cadaveric and radiological studies of rotator cuff tear prevalence. Ann R Coll Surg Engl 2006; 88 (02) 116-121
- 2 Yamamoto A, Takagishi K, Osawa T. et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg 2010; 19 (01) 116-120
- 3 Vaishnav S, Millett PJ. Arthroscopic rotator cuff repair: scientific rationale, surgical technique, and early clinical and functional results of a knotless self-reinforcing double-row rotator cuff repair system. J Shoulder Elbow Surg 2010; 19 (2, Suppl): 83-90
- 4 Gerber C, Schneeberger AG, Beck M, Schlegel U. Mechanical strength of repairs of the rotator cuff. J Bone Joint Surg Br 1994; 76 (03) 371-380
- 5 Kowalsky MS, Dellenbaugh SG, Erlichman DB, Gardner TR, Levine WN, Ahmad CS. Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone. Arthroscopy 2008; 24 (03) 329-334
- 6 Gartsman GM, Khan M, Hammerman SM. Arthroscopic repair of full-thickness tears of the rotator cuff. J Bone Joint Surg Am 1998; 80 (06) 832-840
- 7 Burkhart SS, Danaceau SM, Pearce Jr CE. Arthroscopic rotator cuff repair: Analysis of results by tear size and by repair technique-margin convergence versus direct tendon-to-bone repair. Arthroscopy 2001; 17 (09) 905-912
- 8 Murray Jr TF, Lajtai G, Mileski RM, Snyder SJ. Arthroscopic repair of medium to large full-thickness rotator cuff tears: outcome at 2- to 6-year follow-up. J Shoulder Elbow Surg 2002; 11 (01) 19-24
- 9 Flurin P-H, Landreau P, Gregory T. et al. Cuff Integrity After Arthroscopic Rotator Cuff Repair: Correlation With Clinical Results in 576 Cases. Arthroscopy 2007; 23 (04) 340-346
- 10 Sugaya H, Maeda K, Matsuki K, Moriishi J. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. J Bone Joint Surg Am 2007; 89 (05) 953-960
- 11 Wolf EM, Pennington WT, Agrawal V. Arthroscopic rotator cuff repair: 4- to 10-year results. Arthroscopy 2004; 20 (01) 5-12
- 12 Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 2004; 86 (02) 219-224
- 13 Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG. Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal?. J Bone Joint Surg Am 2005; 87 (06) 1229-1240
- 14 Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff integrity after arthroscopic versus open rotator cuff repair: a prospective study. J Shoulder Elbow Surg 2006; 15 (03) 290-299
- 15 Ellman H, Hanker G, Bayer M. Repair of the rotator cuff. End-result study of factors influencing reconstruction. J Bone Joint Surg Am 1986; 68 (08) 1136-1144
- 16 Iannotti JP, Bernot MP, Kuhlman JR, Kelley MJ, Williams GR. Postoperative assessment of shoulder function: a prospective study of full-thickness rotator cuff tears. J Shoulder Elbow Surg 1996; 5 (06) 449-457
- 17 Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg 2003; 12 (06) 550-554
- 18 Lafosse L, Brozska R, Toussaint B, Gobezie R. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 2007; 89 (07) 1533-1541
- 19 Park MC, ElAttrache NS, Tibone JE, Ahmad CS, Jun BJ, Lee TQ. Part I: Footprint contact characteristics for a transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique. J Shoulder Elbow Surg 2007; 16 (04) 461-468
- 20 Ahmad CS, Stewart AM, Izquierdo R, Bigliani LU. Tendon-bone interface motion in transosseous suture and suture anchor rotator cuff repair techniques. Am J Sports Med 2005; 33 (11) 1667-1671
- 21 Apreleva M, Özbaydar M, Fitzgibbons PG, Warner JJP. Rotator cuff tears: the effect of the reconstruction method on three-dimensional repair site area. Arthroscopy 2002; 18 (05) 519-526
- 22 Kuroda S, Ishige N, Mikasa M. Advantages of arthroscopic transosseous suture repair of the rotator cuff without the use of anchors. Clin Orthop Relat Res 2013; 471 (11) 3514-3522
- 23 Black EM, Austin LS, Narzikul A, Seidl AJ, Martens K, Lazarus MD. Comparison of implant cost and surgical time in arthroscopic transosseous and transosseous equivalent rotator cuff repair. J Shoulder Elbow Surg 2016; 25 (09) 1449-1456
- 24 Garofalo R, Castagna A, Borroni M, Krishnan SG. Arthroscopic transosseous (anchorless) rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 2012; 20 (06) 1031-1035
- 25 Seidl AJ, Lombardi NJ, Lazarus MD. et al. Arthroscopic Transosseous and Transosseous-Equivalent Rotator Cuff Repair: An Analysis of Cost, Operative Time, and Clinical Outcomes. Am J Orthop 2016; 45 (07) E415-E420
- 26 Kummer FJ, Hahn M, Day M, Meislin RJ, Jazrawi LM. A laboratory comparison of a new arthroscopic transosseous rotator cuff repair to a double row transosseous equivalent rotator cuff repair using suture anchors. Bull Hosp Jt Dis (2013) 2013; 71 (02) 128-131
- 27 Park MC, Cadet ER, Levine WN, Bigliani LU, Ahmad CS. Tendon-to-bone pressure distributions at a repaired rotator cuff footprint using transosseous suture and suture anchor fixation techniques. Am J Sports Med 2005; 33 (08) 1154-1159
- 28 Tauber M, Koller H, Resch H. Transosseous arthroscopic repair of partial articular-surface supraspinatus tendon tears. Knee Surg Sports Traumatol Arthrosc 2008; 16 (06) 608-613
- 29 Yamaguchi K, Levine WN, Marra G, Galatz LM, Klepps S, Flatow EL. Transitioning to arthroscopic rotator cuff repair: the pros and cons. Instr Course Lect 2003; 52: 81-92
- 30 Fleega BA. Arthroscopic transhumeral rotator cuff repair: Giant needle technique. Arthroscopy 2002; 18 (02) 218-223
- 31 Black EM, Lin A, Srikumaran U, Jain N, Freehill MT. Arthroscopic transosseous rotator cuff repair: technical note, outcomes, and complications. Orthopedics 2015; 38 (05) e352-e358
- 32 Mahar AT, Moezzi DM, Serra-Hsu F, Pedowitz RA. Comparison and performance characteristics of 3 different knots when tied with 2 suture materials used for shoulder arthroscopy. Arthroscopy 2006; 22 (06) 614.e1-614.e2
- 33 Wüst DM, Meyer DC, Favre P, Gerber C. Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures. Arthroscopy 2006; 22 (11) 1146-1153
- 34 Rossouw DJ, McElroy BJ, Amis AA, Emery RJH. A biomechanical evaluation of suture anchors in repair of the rotator cuff. J Bone Joint Surg Br 1997; 79 (03) 458-461
- 35 Goradia VK, Rochat MC, Kida M, Grana WA. Natural history of a hamstring tendon autograft used for anterior cruciate ligament reconstruction in a sheep model. Am J Sports Med 2000; 28 (01) 40-46
- 36 Pinczewski LA, Clingeleffer AJ, Otto DD, Bonar SF, Corry IS. Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy 1997; 13 (05) 641-643
- 37 Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 1993; 75 (12) 1795-1803
- 38 Weiler A, Peine R, Pashmineh-Azar A, Abel C, Südkamp NP, Hoffmann RFG. Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 2002; 18 (02) 113-123
- 39 Baums MH, Spahn G, Steckel H, Fischer A, Schultz W, Klinger H-M. Comparative evaluation of the tendon-bone interface contact pressure in different single- versus double-row suture anchor repair techniques. Knee Surg Sports Traumatol Arthrosc 2009; 17 (12) 1466-1472
- 40 Lee TQ. Current biomechanical concepts for rotator cuff repair. Clin Orthop Surg 2013; 5 (02) 89-97
- 41 Gupta H, Mishra P, Kataria H. et al. Optimal Angle of the Bone Tunnel for Avoiding Axillary Nerve Injuries During Arthroscopic Transosseous Rotator Cuff Repair: A Magnetic Resonance Imaging-Based Simulation Study. Orthop J Sports Med 2018; 6 (11) 2325967118806295
- 42 Bronsnick D, Pastor A, Peresada D, Amirouche F, Solitro GF, Goldberg BA. Is Arthroscopic Transosseous Rotator Cuff Repair Strength Dependent on the Tunnel Angle?. Orthop J Sports Med 2019; 7 (06) 2325967119848667
- 43 Andres BM, Lam PH, Murrell GA. Tension, abduction, and surgical technique affect footprint compression after rotator cuff repair in an ovine model. J Shoulder Elbow Surg 2010; 19 (07) 1018-1027