Applied Clinical Informatics, Inhaltsverzeichnis Appl Clin Inform 2021; 12(05): 1157-1160DOI: 10.1055/s-0041-1740259 Special Section on Workflow Automation Anticipating Ambulatory Automation: Potential Applications of Administrative and Clinical Automation in Outpatient Healthcare Delivery Kevin Yang 1 Department of Dermatology, Tufts University School of Medicine, Boston, Massachusetts, United States , Vinod E. Nambudiri 2 Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, United States › Institutsangaben Artikel empfehlen Abstract Volltext Referenzen References 1 West CP, Dyrbye LN, Shanafelt TD. Physician burnout: contributors, consequences and solutions. J Intern Med 2018; 283 (06) 516-529 2 Gardner RL, Cooper E, Haskell J. et al. Physician stress and burnout: the impact of health information technology. J Am Med Inform Assoc 2019; 26 (02) 106-114 3 Robertson SL, Robinson MD, Reid A. Electronic health record effects on work-life balance and burnout within the I3 population collaborative. J Grad Med Educ 2017; 9 (04) 479-484 4 Wu DTY, Xu C, Kim A, Bindhu S, Mah KE, Eckman MH. A scoping review of health information technology in clinician burnout. Appl Clin Inform 2021; 12 (03) 597-620 5 van Buchem MM, Boosman H, Bauer MP, Kant IMJ, Cammel SA, Steyerberg EW. The digital scribe in clinical practice: a scoping review and research agenda. NPJ Digit Med 2021; 4 (01) 57 6 Kaufman DR, Sheehan B, Stetson P. et al. Natural language processing-enabled and conventional data capture methods for input to electronic health records: a comparative usability study. JMIR Med Inform 2016; 4 (04) e35 7 Kostrinsky-Thomas AL, Hisama FM, Payne TH. Searching the PDF haystack: automated knowledge discovery in scanned EHR documents. Appl Clin Inform 2021; 12 (02) 245-250 8 Afzal M, Alam F, Malik KM, Malik GM. Clinical context-aware biomedical text summarization using deep neural network: model development and validation. J Med Internet Res 2020; 22 (10) e19810 9 Laï MC, Brian M, Mamzer MF. Perceptions of artificial intelligence in healthcare: findings from a qualitative survey study among actors in France. J Transl Med 2020; 18 (01) 14 10 Wang Y, Wang L, Rastegar-Mojarad M. et al. Clinical information extraction applications: a literature review. J Biomed Inform 2018; 77: 34-49 11 Mishra R, Bian J, Fiszman M. et al. Text summarization in the biomedical domain: a systematic review of recent research. J Biomed Inform 2014; 52: 457-467 12 Garg S, Williams NL, Ip A, Dicker AP. Clinical integration of digital solutions in health care: an overview of the current landscape of digital technologies in cancer care. JCO Clin Cancer Inform 2018; 2: 1-9 13 Mass General Brigham COVID-19 Screener. Accessed August 1, 2021 at: https://covidscreener.massgeneralbrigham.org 14 Facilities CDC. COVID-19 Screening. Updated November 12, 2020. Accessed May 18, 2021 at: https://www.cdc.gov/screening/index.html 15 Palanica A, Docktor MJ, Lieberman M, Fossat Y. The need for artificial intelligence in digital therapeutics. Digit Biomark 2020; 4 (01) 21-25 16 Fulmer R, Joerin A, Gentile B, Lakerink L, Rauws M. Using psychological artificial intelligence (TESS) to relieve symptoms of depression and anxiety: randomized controlled trial. JMIR Ment Health 2018; 5 (04) e64 17 Gabrielli S, Rizzi S, Bassi G. et al. Engagement and effectiveness of a healthy-coping intervention via chatbot for university students during the COVID-19 pandemic: mixed methods proof-of-concept study. JMIR Mhealth Uhealth 2021; 9 (05) e27965 18 Schreier DJ, Lovely JK. Optimizing clinical monitoring tools to enhance patient review by pharmacists. Appl Clin Inform 2021; 12 (03) 621-628 19 Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18 (08) 500-510 20 Ely JW, Osheroff JA, Chambliss ML, Ebell MH, Rosenbaum ME. Answering physicians' clinical questions: obstacles and potential solutions. J Am Med Inform Assoc 2005; 12 (02) 217-224 21 Willis M, Duckworth P, Coulter A, Meyer ET, Osborne M. Qualitative and quantitative approach to assess of the potential for automating administrative tasks in general practice. BMJ Open 2020; 10 (06) e032412 22 Esteva A, Kuprel B, Novoa RA. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542 (7639): 115-118 23 Workman TE, Fiszman M, Hurdle JF. Text summarization as a decision support aid. BMC Med Inform Decis Mak 2012; 12: 41 24 Stai B, Heller N, McSweeney S. et al. Public perceptions of artificial intelligence and robotics in medicine. J Endourol 2020; 34 (10) 1041-1048 25 Nelson CA, Pérez-Chada LM, Creadore A. et al. Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study. JAMA Dermatol 2020; 156 (05) 501-512 26 Sarwar S, Dent A, Faust K. et al. Physician perspectives on integration of artificial intelligence into diagnostic pathology. NPJ Digit Med 2019; 2: 28 27 Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: focus on clinicians. J Med Internet Res 2020; 22 (06) e15154