CC BY 4.0 · Eur J Dent 2023; 17(01): 046-056
DOI: 10.1055/s-0041-1741374
Original Article

Anti-Periodontopathogenic Ability of Mangrove Leaves (Aegiceras corniculatum) Ethanol Extract: In silico and in vitro study

Alexander Patera Nugraha
1   Department Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
2   Division of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
3   Marine Science Department, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
,
Albertus Putera Nugraha
4   Faculty of Medicine, Universitas Airlangga, Universitas Airlangga, Surabaya, Indonesia
,
Martining Shoffa Puspitaningrum
5   Faculty of Dental Medicine, Universitas Airlangga, Universitas Airlangga, Surabaya, Indonesia
,
Yuniar Rizqianti
5   Faculty of Dental Medicine, Universitas Airlangga, Universitas Airlangga, Surabaya, Indonesia
,
Desintya Rahmadhani
5   Faculty of Dental Medicine, Universitas Airlangga, Universitas Airlangga, Surabaya, Indonesia
,
Viol Dhea Kharisma
6   Department of Biology, Faculty of Mathematic and Natural Science, Universitas Brawijaya, Surabaya, Indonesia
,
Nastiti Faradilla Ramadhani
7   Dentomaxillofacial Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Rini Devijanti Ridwan
8   Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Tengku Natasha Eleena binti Tengku Ahmad Noor
9   609 Armed Forces Dental Clinic, Kem Semenggo, Kuching, Sarawak, Malaysia
,
Diah Savitri Ernawati
10   Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
› Author Affiliations

Abstract

Objective Mangrove (Aegiceras corniculatum) is an abundant natural marine resource of Indonesia, which can be explored for treating periodontal disease due to its potential as immunoregulatory, antibacterial, and antioxidant properties. The objective of this study was to investigate the active compound from Indonesian mangrove leaf extract (A. corniculatum) (MLE) for developing a herbal-based mouthwash through in silico and in vitro studies.

Materials and Methods Phytochemistry and liquid chromatography-high resolution mass spectrometry (LC-HRMS) were done to explore the active compounds in MLE. Chemistry screening and interaction, absorption, distribution, metabolism, and excretion (ADME), molecular docking simulation, and visualization of MLE active compounds as anti-inflammatory, antioxidant, and antibacterial were investigated in silico The inhibition zone of MLE against Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) as periodontopathogenic bacterias was performed by diffusion method. Doxycycline 100 mg was used as a positive control, as a treatment group, there were five groups, namely 0%, 25%, 50%, 75%, and 100% MLE.

Results Alkaloid, saponin, flavonoid, triterpenoid, steroid, tannin, and quinone were detected in MLE. A high concentration of (-)epicatechin and coumaric acid (CA) were found in MLE. MLE in 100% concentration has the most effective ability to inhibit Fn, Pg, Aa growth in vitro. (-)-Epicatechin has a higher negative binding affinity than CA that can enhance heat shock protein (HSP)-30, HSP-70, HSP-90, interleukin-10, and FOXP3 and also inhibit interleukin-6, peptidoglycan, flagellin, and dectin in silico.

Conclusion MLE of A. corniculatum has antioxidant, anti-inflammatory, and antibacterial activities that can be a potential raw material for developing a herbal-based mouthwash.



Publication History

Article published online:
22 April 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Andriani I, Chairunnisa PA. Chronic periodontitis treatment with curretase. Insisiva Dental Journal: Majalah Kedokteran Gigi Insisiva 2019; 8 (01) 25-30
  • 2 Komara I, Alfa Winata E, Susanto A, Hendiani I. Periodontal tray application of chlorine dioxide gel as an adjunct to scaling and root planing in the treatment of chronic periodontitis. Saudi Dent J 2020; 32 (04) 194-199
  • 3 Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol 2017; 44 (05) 456-462
  • 4 Könönen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med 2019; 8 (08) 1135
  • 5 Kementerian Kesehatan Republik Indonesia. Laporan Nasional RISKESDAS. 2018 207
  • 6 Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I. Cytokines and chemokines in periodontitis. Eur J Dent 2020; 14 (03) 483-495 DOI: 10.1055/s-0040-1712718.
  • 7 Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis?. J Periodontal Res 2015; 50 (05) 570-585
  • 8 Xiao CJ, Yu XJ, Xie JL, Liu S, Li S. Protective effect and related mechanisms of curcumin in rat experimental periodontitis. Head Face Med 2018; 14 (01) 12
  • 9 Machado V, Botelho J, Amaral A. et al. Prevalence and extent of chronic periodontitis and its risk factors in a Portuguese subpopulation: a retrospective cross-sectional study and analysis of clinical attachment loss. PeerJ 2018; 6: e5258
  • 10 Borges JS, Paranhos LR, de Souza GL. et al. Does systemic oral administration of curcumin effectively reduce alveolar bone loss associated with periodontal disease? A systematic review and meta-analysis of preclinical in vivo studies. J Funct Foods 2020; 75: 104226
  • 11 Jepsen K, Jepsen S. Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontol 2000 2016; 71 (01) 82-112
  • 12 Pereira EM, da Silva JL, Silva FF. et al. Clinical evidence of the efficacy of a mouthwash containing propolis for the control of plaque and gingivitis: a phase II study. Evid Based Complement Alternat Med 2011; 2011: 750249 DOI: 10.1155/2011/750249.
  • 13 da Costa LFNP, Amaral CDSF, Barbirato DDS, Leão ATT, Fogacci MF. Chlorhexidine mouthwash as an adjunct to mechanical therapy in chronic periodontitis: a meta-analysis. J Am Dent Assoc 2017; 148 (05) 308-318
  • 14 Rashed HT. Evaluation of the effect of hydrogen peroxide as a mouthwash in comparison with chlorhexidine in chronic periodontitis patients: a clinical study. J Int Soc Prev Community Dent 2016; 6 (03) 206-212
  • 15 Patra JK, Mohanta YK. Antimicrobial compounds from mangrove plants: a pharmaceutical prospective. Chin J Integr Med 2014; 20 (04) 311-320
  • 16 Saranraj P, Sujitha D. Mangrove medicinal plants: a review. AEJTS 2015; 7 (03) 146-156 DOI: 10.5829/idosi.aejts.2015.7.3.94150.
  • 17 Vinoth R, Kumaravel S, Ranganathan R. Therapeutic and traditional uses of mangroves plants. JDDT 2019; 9 (4-s): 849-854
  • 18 Ravikumar S, Ramanathan G, Inbaneson SJ, Ramu A. Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum . Parasitol Res 2011; 108 (01) 107-113 DOI: 10.1007/s00436-010-2041-5.
  • 19 Tangkery RAB, Paransa DS, Rumengan A. Uji aktivitas antikoagulan ekstrak mangrove Aegiceras corniculatum . JPLT 2013; 1 (01) 1
  • 20 Vinh LB, Phong NV, Ali I. et al. Identification of potential anti-inflammatory and melanoma cytotoxic compounds from Aegiceras corniculatum . Med Chem Res 2020; 2020 (29) 2020-2027
  • 21 Trianto A, Wibowo E, Suryono S, Sapta RS. Ekstrak daun mangrove Aegiceras corniculatum sebagai antibakteri Vibrio harveyi dan Vibrio parahaemolyticus . JIK 2003; 9 (04) 186-189
  • 22 Janmanchi H, Raju A, Degani MS, Ray MK, Rajan MGR. Antituberculosis, antibacterial and antioxidant activities of Aegiceras corniculatum, a mangrove plant and effect of various extraction processes on its phytoconstituents and bioactivity. South African J of Bothany 2017; 113: 421-427
  • 23 Gopi A, Stephy PS, Jacob KKJ, Kumar CN. In vitro antibacterial screening of fatty acid from Aegiceras corniculatum against human pathogens. JPP 2019; 8 (01) 448-451 . Available at: https://www.phytojournal.com/archives/2019/vol8issue1/PartH/7-6-400-185.pdf
  • 24 Prieto-Martínez, Fernando D, Arciniega M, Medina-Franco JL. Molecular docking: current advances and challenges. Revista especializada en ciencias químico-biológicas 2018; 21: 65-87
  • 25 Kharisma VD, Ansori ANM, Widyananda MH, Utami SL, Nugraha AP. Molecular simulation: the potency of conserved region on E6 HPV-16 as a binding target of black tea compounds against cervical cancer. Biochem Cell Arch 2020; 20 (Suppl. 01) 2795-2802
  • 26 Kharisma VD, Widyananda MH, Ansori ANM, Nege A, Naw SW, Nugraha AP. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: a bioinformatics approach. J Pharm Pharmacogn Res 2021; 9 (04) 435-445
  • 27 Luqman A, Kharisma VD, Ruiz RA, Götz F. In Silico and in Vitro Study of Trace Amines (TA) and Dopamine (DOP) Interaction with Human Alpha 1-Adrenergic Receptor and the Bacterial Adrenergic Receptor QseC. Cell Physiol Biochem 2020; 54 (05) 888-898
  • 28 Putra WE, Kharisma VD, Susanto H. The exploration of medicinal plants' phytochemical compounds as potential inhibitor against human α-3 nicotinic acetylcholine receptors: The insight from computational study. AIP Conf Proc 2020; 2231 (01) 040078
  • 29 Widyananda MH, Pratama SK, Samoedra RS. et al. Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res 2021; 9 (04) 484-496
  • 30 Susanto H, Kharisma VD, Listyorini D, Taufiq A. Effectivity of black tea polyphenol in adipogenesis-related IGF-1 and its receptor pathway through in silico based study. J Phys Conf Ser 2018; 1093 (01) 012037
  • 31 Sibero MT, Siswanto AP, Murwani A. et al. Antibacterial, cytotoxicity and metabolite profiling of crude methanolic extract from andaliman (Zanthoxylum acanthopodium) fruit. Biodiversitas (Surak) 2020; 21 (09) 4147-4254 DOI: 10.13057/biodiv/d210928.
  • 32 Okla MK, Alatar AA, Al-Amri SS, Soufan WH, Ahmad A, Abdel-Maksoud MA. Antibacterial and antifungal activity of the extracts of different parts of Avicennia marina (Forssk.) Vierh. Plants (Basel) 2021; 10 (02) 252
  • 33 Vinh LB, Nguyet NTM, Yang SY. et al. Cytotoxic triterpene saponins from the mangrove Aegiceras corniculatum . Nat Prod Res 2019; 33 (05) 628-634 DOI: 10.1080/14786419.2017.1402320.
  • 34 Li Y, Dong C, Xu MJ, Lin WH. New alkylated benzoquinones from mangrove plant Aegiceras corniculatum with anticancer activity. J Asian Nat Prod Res 2020; 22 (02) 121-130
  • 35 Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020; 146: 104720
  • 36 Utami NP, Khaerunissa R, Pramitasari I, Herbayani A. Screening of mango leaves (Mangifera indica l.) Varieties in indonesia for antibacterial activity in staphylococcus aureus. Int J Res Ayurveda Pharm 2020; 11 (02) 77-80
  • 37 Nugraha SE, Achmad E, Sitompul E. Antibacterial activity of ethyl acetate fraction of passion fruit peel (Passiflora Edulis Sims) on Staphylococcus aureus and Escherichia coli . Indonesian Journal of Pharmaceutical and Clinical Research 2019; 2 (01) 07-12
  • 38 Hamza M, Nadir M, Mehmood N, Farooq A. In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains. Indian J Pharmacol 2016; 48 (06) 710-714
  • 39 Figueroa-Valvere L, Díaz-Cedillo F, Lopez-Ramos M, Garcia-Cervera E, Gomez EP, Torres-Cutz R. Antibacterial activity induced by several steroid derivatives against E. coli, S. typhi, K. pneumoniae and S. aureus . Biotechnology (N Y) 2011; 40: 5452-5455
  • 40 Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview. Materials (Basel) 2020; 13 (14) 3224 DOI: 10.3390/ma13143224.
  • 41 Alibi S, Crespo D, Navas J. Plant-derivatives small molecules with antibacterial activity. Antibiotics (Basel) 2021; 10 (03) 231
  • 42 Biswas R, Rahman SM, Islam KMD. et al. Antioxidant, anti-inflammatory, and anticoagulation properties of Aegiceras corniculatum and Acanthus ilicifolius . Pharmaceutical and Biomedical Research 2019; 5 (03) 35-44
  • 43 Roome T, Dar A, Ali S, Naqvi S, Choudhary MI. A study on antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective actions of Aegiceras corniculatum (stem) extracts. J Ethnopharmacol 2008; 118 (03) 514-521