Subscribe to RSS
DOI: 10.1055/s-0042-100633
Hirnfunktionelle korrelate typischer Muster des Klinischen Routine-EEGs
Brain Functional Correlates of Typical EEG PatternsPublication History
Publication Date:
20 April 2016 (online)
Zusammenfassung
Was verbirgt sich hinter den EEG-Phänomenen, die wir im klinischen EEG tagtäglich phänotypisch erkennen und empirisch deuten? Dies beginnt bei den Oszillationen des Ruhe-EEG, die bereits Hans Berger kannte und einordnete (z. B. Alpharhythmus), führt weiter über die Grafoelemente und Verlangsamungen des Schlaf-EEGs, die schon Loomis beschrieb (z. B. Schlafspindeln, K-Komplexe, Vertexzacken, Theta- und Deltaoszillationen) bis hin zu EEG-Pathologika bei Epilepsie ([inter-]iktale epilepsietypische Potenziale und Muster). Aber auch in den kognitiven Neurowissenschaften beobachtete Phänomene wie z. B. das sogenannte „Gammabinding“, das die Zusammenarbeit verschiedener Hirnregionen vermittelt, sind von Interesse. Zur Beantwortung der Frage, was im Gehirn passiert, während wir die unterschiedlichen charakteristischen EEG-Merkmale sehen, ist die simultane Ableitung des EEG während nicht-invasiver blutoxygenierungssensitiver funktioneller Magnetresonanztomografie (BOLD-fMRT) eine geeignete Methode. Hans Bergers Idee des Gedankenlesens mittels EEG ist nach wie vor nicht verwirklicht, aber wir können heute einfache Konzepte formulieren, die Phänomenen des Oberflächen-EEG Hirnfunktionszustände zuordnen. Hieraus wiederum eröffnen sich weiterführende Perspektiven auf kognitive Prozesse, Epilepsiesyndrome und zukünftige Therapiestrategien.
Abstract
Which are the brain functional correlates of the EEG phenomena we observe on clinical EEG every day? This includes physiological resting alpha oscillations identified and interpreted already by Hans Berger, EEG slowing and paroxysms (K-complexes, vertex sharp waves) during sleep described by Alfred Loomis, on the one hand, and pathological EEG activity (interictal epileptiform potentials), on the other. Of similar interest are electrophysiological phenomena discussed in cognitive neuroscience, e. g. gamma binding indicating interregional brain communication. Non-invasive simultaneous EEG-combined functional magnetic resonance imaging (fMRI) based on the blood oxygen level-dependent signal allows addressing the opening question. Hans Berger’s idea of deciphering his contemporaries’ thoughts remains unfulfilled to this day. Nevertheless, we have arrived at the formulation of simple concepts how some surface EEG phenomena might relate to brain function. From this, new perspectives on cognition and epilepsy syndromes emerge including future treatment strategies.
-
Literatur
- 1 Ives JR, Warach S, Schmitt F et al. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 1993; 87: 417-420
- 2 Lemieux L, Allen PJ, Franconi F et al. Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 1997; 38: 943-952
- 3 Allen PJ, Polizzi G, Krakow K et al. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 1998; 8: 229-239
- 4 Laufs H, Daunizeau J, Carmichael DW et al. Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage 2008; 40: 515-528
- 5 Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev 2006; 30: 823-838
- 6 Laufs H. A personalized history of EEG-fMRI integration. Neuroimage 2012; 62: 1056-1067
- 7 Noachtar S, Remi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav 2009; 15: 22-33
- 8 AASM The AASM Manual for the Scoring of Sleep and Associated Events- Rules. Terminology and Technical Specifications. Chicago: American Academy of Sleep Medicine; 2007
- 9 Buckner RL, Vincent JL. Unrest at rest: default activity and spontaneous network correlations. Neuroimage. 2007; 37: 1091-1096 discussion 1097-1099
- 10 Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007; 37: 1083-1090 discussion 1097-1089
- 11 Dang-Vu TT, Schabus M, Desseilles M et al. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci USA 2008; 105: 15160-15165
- 12 Owen AM, Schiff ND, Laureys S. A new era of coma and consciousness science. Prog Brain Res 2009; 177: 399-411
- 13 Purdon PL, Pierce ET, Bonmassar G et al. Simultaneous electroencephalography and functional magnetic resonance imaging of general anesthesia. Annals of the New York Academy of Sciences 2009; 1157: 61-70
- 14 Tyvaert L, Hawco C, Kobayashi E et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain 2008; 131: 2042-2060
- 15 Gotman J, Kobayashi E, Bagshaw AP et al. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 2006; 23: 906-920
- 16 Laufs H, Duncan JS. Electroencephalography/functional MRI in human epilepsy: what it currently can and cannot do. Curr Opin Neurol 2007; 20: 417-423
- 17 Schabus M, Dang-Vu TT, Albouy G et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci USA 2007; 104: 13164-13169
- 18 Laufs H. Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Hum Brain Mapp 2008; 29: 762-769
- 19 Laufs H, Walker MC, Lund TE. ‘Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study’ – its limitations and an alternative approach. Brain 2007; 130: e75 author reply e76
- 20 Jahnke K, von Wegner F, Morzelewski A et al. To wake or not to wake? The two-sided nature of the human K-complex. Neuroimage 2012; 59: 1631-1638
- 21 Stern JM, Caporro M, Haneef Z et al. Functional imaging of sleep vertex sharp transients. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 2011; 122: 1382-1386
- 22 Laufs H, Krakow K, Sterzer P et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 2003; 100: 11053-11058
- 23 Morillon B, Lehongre K, Frackowiak RS et al. Neurophysiological origin of human brain asymmetry for speech and language. Proc Natl Acad Sci USA 2010; 107: 18688-18693
- 24 Laufs H, Daunizeau J, Carmichael DW et al. Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage 2008; 40: 515-528
- 25 Daunizeau J, Vaudano AE, Lemieux L. Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike-wave complexes. Neuroimage 2010; 49: 656-667
- 26 Daunizeau J, Grova C, Marrelec G et al. Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 2007; 36: 69-87
- 27 Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC et al. Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp 2009; 30: 2701-2721
- 28 Luessi M, Babacan SD, Molina R et al. Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors. Neuroimage 2011; 55: 113-132
- 29 Rosa MJ, Daunizeau J, Friston KJ. EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. J Integr Neurosci 2010; 9: 453-476
- 30 Logothetis NK, Pauls J, Augath M et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157
- 31 Shmuel A, Augath M, Oeltermann A et al. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 2006; 9: 569-577
- 32 Laufs H. Die Darstellung gesunder und pathologischer Hirnzustände mittels EEG-kombinierter funktioneller Kernspintomografie (EEG-fMRT). Klinische Neurophysiologie 2011; 42: 183-193
- 33 Laufs H, Kleinschmidt A, Beyerle A et al. EEG-correlated fMRI of human alpha activity. Neuroimage 2003; 19: 1463-1476
- 34 Mantini D, Perrucci MG, Del Gratta C et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 2007; 104: 13170-13175
- 35 Berger H. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 1929; 87: 527-570
- 36 Moosmann M, Ritter P, Krastel I et al. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 2003; 20: 145-158
- 37 Goldman RI, Stern JM, Engel Jr J et al. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 2002; 13: 2487-2492
- 38 Laufs H, Holt JL, Elfont R et al. Where the BOLD signal goes when alpha EEG leaves. Neuroimage 2006; 31: 1408-1418
- 39 Raichle ME, MacLeod AM, Snyder AZ et al. A default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 676-682
- 40 Chang C, Liu Z, Chen MC et al. EEG correlates of time-varying BOLD functional connectivity. Neuroimage 2013; 72: 227-236
- 41 Tagliazucchi E, von Wegner F, Morzelewski A et al. Dynamic BOLD functional connectivity in humans and its electrophysiological correlates. Front Hum Neurosci 2012; 6: 339
- 42 Niessing J, Ebisch B, Schmidt KE et al. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 2005; 309: 948-951
- 43 Singer W. Distributed processing and temporal codes in neuronal networks. Cogn Neurodyn 2009; 3: 189-196
- 44 Tagliazucchi E, Laufs H. Multimodal imaging of dynamic functional connectivity. Frontiers in neurology 2015; 6: 10
- 45 Laufs H, Rodionov R, Thornton R et al. Altered FMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology. Frontiers in neurology 2014; 5: 175
- 46 Calhoun VD, Miller R, Pearlson G et al. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 2014; 84: 262-274
- 47 Tagliazucchi E, von Wegner F, Morzelewski A et al. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. Neuroimage 2013; 70: 327-339
- 48 Tononi G. An information integration theory of consciousness. BMC Neurosci 2004; 5: 42
- 49 Laufs H, Hamandi K, Walker MC et al. EEG-fMRI mapping of asymmetrical delta activity in a patient with refractory epilepsy is concordant with the epileptogenic region determined by intracranial EEG. Magn Reson Imaging 2006; 24: 367-371
- 50 Laufs H, Lengler U, Hamandi K et al. Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 2006; 47: 444-448
- 51 Pressler RM, Robinson RO, Wilson GA et al. Treatment of interictal epileptiform discharges can improve behavior in children with behavioral problems and epilepsy. J Pediatr 2005; 146: 112-117
- 52 Aarts JH, Binnie CD, Smit AM et al. Selective cognitive impairment during focal and generalized epileptiform EEG activity. Brain 1984; 107 (Pt 1) 293-308
- 53 Binnie CD. Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG?. Lancet Neurol 2003; 2: 725-730
- 54 Piredda S, Gale K. A crucial epileptogenic site in the deep prepiriform cortex. Nature 1985; 317: 623-625
- 55 Flanagan D, Badawy RA, Jackson GD. EEG-fMRI in focal epilepsy: local activation and regional networks. Clin Neurophysiol 2014; 125: 21-31
- 56 Laufs H, Richardson MP, Salek-Haddadi A et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology 2011; 77: 904-910
- 57 Koubeissi MZ, Bartolomei F, Beltagy A et al. Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav 2014; 37: 32-35
- 58 Demertzi A, Soddu A, Laureys S. Consciousness supporting networks. Curr Opin Neurobiol 2013; 23: 239-244
- 59 Crick FC, Koch C. What is the function of the claustrum?. Philos Trans R Soc Lond B Biol Sci 2005; 360: 1271-1279
- 60 Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain 2001; 124: 1683-1700
- 61 Salanova V, Witt T, Worth R et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015; 84: 1017-1025
- 62 Fisher R, Salanova V, Witt T et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010; 51: 899-908
- 63 Laufs H. Functional imaging of seizures and epilepsy: evolution from zones to networks. Curr Opin Neurol 2012; 25: 194-200
- 64 Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 2005; 28: 317-324
- 65 Kuhn A, Brodbeck V, Tagliazucchi E et al. Narcoleptic Patients Show Fragmented EEG-Microstructure During Early NREM Sleep. Brain Topogr. 2014
- 66 Tagliazucchi E, Behrens M, Laufs H. Sleep neuroimaging and models of consciousness. Frontiers in psychology 2013; 4: 256
- 67 Brodbeck V, Kuhn A, von Wegner F et al. EEG microstates of wakefulness and NREM sleep. Neuroimage 2012; 62: 2129-2139
- 68 Tagliazucchi E, von Wegner F, Morzelewski A et al. Automatic sleep staging using fMRI functional connectivity data. Neuroimage 2012; 63: 63-72
- 69 Tagliazucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 2014; 82: 695-708
- 70 Tagliazucchi E, von Wegner F, Morzelewski A et al. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proc Natl Acad Sci USA 2013; 110: 15419-15424
- 71 Blumenfeld H, Meador K, Jackson GD. Commentary: The return of consciousness to epilepsy seizure classification. Epilepsia 2015; 56: 345-347
- 72 Blumenfeld H, Meador KJ. Consciousness as a useful concept in epilepsy classification. Epilepsia 2014;