Aktuelle Urol 2016; 47(03): 203-209
DOI: 10.1055/s-0042-101215
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Aktuelle Aspekte zur Pathogenese der Harnwegsinfektion

Current Aspects on the Pathogenesis of Urinary Tract Infections
G. Magistro
1   Urologische Klinik und Poliklinik der Universität München, Ludwig-Maximilians-Universität München
,
J. Marcon
1   Urologische Klinik und Poliklinik der Universität München, Ludwig-Maximilians-Universität München
,
V. Beck
1   Urologische Klinik und Poliklinik der Universität München, Ludwig-Maximilians-Universität München
,
A. Herlemann
1   Urologische Klinik und Poliklinik der Universität München, Ludwig-Maximilians-Universität München
,
C G. Stief
1   Urologische Klinik und Poliklinik der Universität München, Ludwig-Maximilians-Universität München
,
C. Gratzke
1   Urologische Klinik und Poliklinik der Universität München, Ludwig-Maximilians-Universität München
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. März 2016 (online)

Zusammenfassung

Die Harnwegsinfektion zählt weiterhin zu den häufigsten bakteriellen Infektionen weltweit. Jede zweite Frau wird zumindest einmal in ihrem Leben eine Harnwegsinfektion erleiden. Bisher stellte die antimikrobielle Therapie eine kontrollierte und effektive Behandlung dar, doch könnte sich dies angesichts zunehmender multiresistenter Erreger und der stagnierenden Entwicklung neuer Antibiotika in nicht allzu ferner Zukunft ändern. Das Verständnis der komplexen Interaktion zwischen Harnwegserreger und Wirt im Rahmen einer Harnwegsinfektion ist daher in vielerlei Hinsicht von großem Interesse. Häufig beobachtete klinische Phänotypen weisen auf allgemeine Grundprinzipien hin, die für die Entwicklung neuer Therapieoptionen entscheidend sind. Durch die Ausbildung von intrazellulären Reservoiren gelingt es den Harnwegserregern nicht nur der ersten massiven Wirtsantwort im Harntrakt zu entgehen sondern auch langfristig eine Quelle für künftige Rezidive zu schaffen. Ein vielseitiges Repertoire an Virulenzfaktoren wird von hochspezialisierten Uropathogenen eingesetzt, um sich im Harntrakt etablieren zu können. Die Abwehrmechanismen des Wirtes dagegen scheinen auf wichtige Pathomechanismen speziell ausgerichtet zu sein. Erkenntnisse dieser vielschichtigen Interaktionen bieten die Gelegenheit, neue Therapieansätze zu entwickeln, die in Zukunft alternativ zu Antibiotika oder als Ergänzung zum Einsatz kommen könnten.

Abstract

Urinary tract infections are among the most common bacterial infectious diseases worldwide. Every second woman will experience at least one urinary tract infection in her lifetime. The administration of antibiotics has been a safe and efficient treatment modality so far. However, due to the emergence of multi-resistant pathogens and the developmental void of new antimicrobial drugs, the therapy of infections mighty become more challenging in the near future. So, knowledge of the complex host-pathogen interaction is of great importance. Common phenotypes observed in clinical practice suggest basic principles, which are relevant for the development of novel antimicrobial strategies. With invading pathogens forming intracellular bacterial communities they evade host response and provide a nidus for recurrent infection. A plethora of virulence factors allow uropathogenic bacteria to colonize and to establish infections in the urinary tract. In response, host responses seem to address specific virulence mechanisms that are essential to pathogenicity. Deciphering the molecular mechanisms underlying the complex host-pathogen interaction is critical to devise novel treatment options.

 
  • Literatur

  • 1 Stamm WE, Norrby SR. Urinary tract infections: disease panorama and challenges. J Infect Dis 2001; 183 (Suppl. 01) S1-S4
  • 2 Flores-Mireles AL, Walker JN, Caparon M et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13: 269-284
  • 3 Foxman B. Recurring urinary tract infection: incidence and risk factors. Am J Public Health 1990; 80: 331-333
  • 4 Foxman B, Barlow R, D’Arcy H et al. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol 2000; 10: 509-515
  • 5 Hooton TM, Bradley SF, Cardenas DD et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 2010; 50: 625-663
  • 6 Kucheria R, Dasgupta P, Sacks SH et al. Urinary tract infections: new insights into a common problem. Postgrad Med J 2005; 81: 83-86
  • 7 Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004; 2: 123-140
  • 8 Sosa V, Schlapp G, Zunino P. Proteus mirabilis isolates of different origins do not show correlation with virulence attributes and can colonize the urinary tract of mice. Microbiology 2006; 152: 2149-2157
  • 9 Flannery EL, Mody L, Mobley HL. Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun 2009; 77: 4887-4894
  • 10 Oelschlaeger TA, Dobrindt U, Hacker J. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. International journal of antimicrobial agents 2002; 19: 517-521
  • 11 Sabate M, Moreno E, Perez T et al. Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin Microbiol Infect 2006; 12: 880-886
  • 12 Schubert S, Darlu P, Clermont O et al. Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 2009; 5: e1000257
  • 13 Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405: 299-304
  • 14 Waksman G, Hultgren SJ. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 2009; 7: 765-774
  • 15 Wurpel DJ, Beatson SA, Totsika M et al. Chaperone-usher fimbriae of Escherichia coli. PloS one 2013; 8: e52835
  • 16 Eto DS, Jones TA, Sundsbak JL et al. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 2007; 3: e100
  • 17 Hannan TJ, Totsika M, Mansfield KJ et al. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 2012; 36: 616-648
  • 18 Mossman KL, Mian MF, Lauzon NM et al. Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J Immunol 2008; 181: 6702-6706
  • 19 Lane MC, Mobley HL. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 2007; 72: 19-25
  • 20 Wright KJ, Hultgren SJ. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol 2006; 1: 75-87
  • 21 Rice JC, Peng T, Spence JS et al. Pyelonephritic Escherichia coli expressing P fimbriae decrease immune response of the mouse kidney. J Am Soc Nephrol 2005; 16: 3583-3591
  • 22 Langermann S, Mollby R, Burlein JE et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 2000; 181: 774-778
  • 23 Langermann S, Palaszynski S, Barnhart M et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 1997; 276: 607-611
  • 24 Brumbaugh AR, Mobley HL. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev Vaccines 2012; 11: 663-676
  • 25 Cusumano CK, Pinkner JS, Han Z et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 2011; 3 109ra15
  • 26 Klein T, Abgottspon D, Wittwer M et al. FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J Med Chem 2010; 53: 8627-8641
  • 27 Totsika M, Kostakioti M, Hannan TJ et al. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J Infect Dis 2013; 208: 921-928
  • 28 Greene SE, Pinkner JS, Chorell E et al. Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. MBio 2014; 5: e02038
  • 29 Kranjcec B, Papes D, Altarac S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J Urol 2014; 32: 79-84
  • 30 Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007; 71: 413-451
  • 31 Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol 2004; 2: 946-953
  • 32 Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 2000; 54: 881-941
  • 33 Garenaux A, Caza M, Dozois CM. The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet Microbiol 2011; 153: 89-98
  • 34 Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11: 589-603
  • 35 Garcia EC, Brumbaugh AR, Mobley HL. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 2011; 79: 1225-1235
  • 36 Alteri CJ, Hagan EC, Sivick KE et al. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog 2009; 5: e1000586
  • 37 Brumbaugh AR, Smith SN, Mobley HL. Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect Immun 2013; 81: 3309-3316
  • 38 Wieser A, Magistro G, Norenberg D et al. First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS). Int J Med Microbiol 2012; 302: 10-18
  • 39 Wieser A, Romann E, Magistro G et al. A multiepitope subunit vaccine conveys protection against extraintestinal pathogenic Escherichia coli in mice. Infect Immun 2010; 78: 3432-3442
  • 40 Nielubowicz GR, Mobley HL. Host-pathogen interactions in urinary tract infection. Nat Rev Urol 2010; 7: 430-441
  • 41 Klemm P, Hancock V, Schembri MA. Mellowing out: adaptation to commensalism by Escherichia coli asymptomatic bacteriuria strain 83972. Infect Immun 2007; 75: 3688-3695
  • 42 Klemm P, Roos V, Ulett GC et al. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect Immun 2006; 74: 781-785
  • 43 Lutay N, Ambite I, Gronberg Hernandez J et al. Bacterial control of host gene expression through RNA polymerase II. J Clin Invest 2013; 123: 2366-2379
  • 44 Ragnarsdottir B, Jonsson K, Urbano A et al. Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PloS one 2010; 5: e10734
  • 45 Zdziarski J, Svanborg C, Wullt B et al. Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation?. Infect Immun 2008; 76: 695-703
  • 46 Roos V, Ulett GC, Schembri MA et al. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine. Infect Immun 2006; 74: 615-624
  • 47 Darouiche RO, Green BG, Donovan WH et al. Multicenter randomized controlled trial of bacterial interference for prevention of urinary tract infection in patients with neurogenic bladder. Urology 2011; 78: 341-346
  • 48 Sunden F, Hakansson L, Ljunggren E et al. Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J Urol 2010; 184: 179-185
  • 49 Zdziarski J, Brzuszkiewicz E, Wullt B et al. Host imprints on bacterial genomes–rapid, divergent evolution in individual patients. PLoS Pathog 2010; 6: e1001078
  • 50 Anderson GG, Palermo JJ, Schilling JD et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 2003; 301: 105-107
  • 51 Berry RE, Klumpp DJ, Schaeffer AJ. Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli. Infect Immun 2009; 77: 2762-2772
  • 52 Bishop BL, Duncan MJ, Song J et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med 2007; 13: 625-630
  • 53 Doye A, Mettouchi A, Bossis G et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 2002; 111: 553-564
  • 54 Duncan MJ, Li G, Shin JS et al. Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 2004; 279: 18944-18951
  • 55 Martinez JJ, Hultgren SJ. Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli. Cell Microbiol 2002; 4: 19-28
  • 56 Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 2001; 69: 4572-4579
  • 57 Szabados F, Kleine B, Anders A et al. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol Lett 2008; 285: 163-169
  • 58 Rosen DA, Pinkner JS, Jones JM et al. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect Immun 2008; 76: 3337-3345
  • 59 Thumbikat P, Berry RE, Zhou G et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 2009; 5: e1000415
  • 60 Wang H, Min G, Glockshuber R et al. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 2009; 392: 352-361
  • 61 Dhakal BK, Mulvey MA. Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem 2009; 284: 446-454
  • 62 Eto DS, Gordon HB, Dhakal BK et al. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 2008; 10: 2553-2567
  • 63 Schwartz DJ, Chen SL, Hultgren SJ et al. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect Immun 2011; 79: 4250-4259
  • 64 Anderson GG, Martin SM, Hultgren SJ. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 2004; 6: 1094-1101
  • 65 Justice SS, Hung C, Theriot JA et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 2004; 101: 1333-1338
  • 66 Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA 2006; 103: 14170-14175
  • 67 Klumpp DJ, Weiser AC, Sengupta S et al. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-kappaB. Infect Immun 2001; 69: 6689-6695
  • 68 Mulvey MA, Lopez-Boado YS, Wilson CL et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 1998; 282: 1494-1497
  • 69 Blango MG, Mulvey MA. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 2010; 54: 1855-1863
  • 70 Schilling JD, Lorenz RG, Hultgren SJ. Effect of trimethoprim-sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 2002; 70: 7042-7049
  • 71 Rosen DA, Hooton TM, Stamm WE et al. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 2007; 4: e329
  • 72 Robino L, Scavone P, Araujo L et al. Intracellular bacteria in the pathogenesis of Escherichia coli urinary tract infection in children. Clin Infect Dis 2014; 59: e158-e164
  • 73 Robino L, Scavone P, Araujo L et al. Detection of intracellular bacterial communities in a child with Escherichia coli recurrent urinary tract infections. Pathog Dis 2013; 68: 78-81
  • 74 Hunstad DA, Justice SS. Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli. Annu Rev Microbiol 2010; 64: 203-221
  • 75 Sivick KE, Mobley HL. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 2010; 78: 568-585
  • 76 Song J, Abraham SN. TLR-mediated immune responses in the urinary tract. Curr Opin Microbiol 2008; 11: 66-73
  • 77 Godaly G, Ambite I, Svanborg C. Innate immunity and genetic determinants of urinary tract infection susceptibility. Curr Opin Infect Dis 2015; 28: 88-96
  • 78 Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410: 1099-1103
  • 79 Zhang D, Zhang G, Hayden MS et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004; 303: 1522-1526
  • 80 Apodaca G. The uroepithelium: not just a passive barrier. Traffic 2004; 5: 117-128
  • 81 Song J, Duncan MJ, Li G et al. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog 2007; 3: e60
  • 82 Song J, Bishop BL, Li G et al. TLR4-initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 2007; 1: 287-298
  • 83 Song J, Bishop BL, Li G et al. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci USA 2009; 106: 14966-14971
  • 84 Ragnarsdottir B, Samuelsson M, Gustafsson MC et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis 2007; 196: 475-484
  • 85 Lundstedt AC, Leijonhufvud I, Ragnarsdottir B et al. Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J Infect Dis 2007; 195: 1227-1234
  • 86 Lundstedt AC, McCarthy S, Gustafsson MC et al. A genetic basis of susceptibility to acute pyelonephritis. PloS one 2007; 2: e825