Rofo 2016; 188(05): 488-493
DOI: 10.1055/s-0042-101251
Musculoskeletal System
© Georg Thieme Verlag KG Stuttgart · New York

Comparison of the Radiation Dose from Cone Beam Computed Tomography and Multidetector Computed Tomography in Examinations of the Hand

Vergleich der Strahlendosis von Cone-Beam Computertomografie und Multidetektor Computertomografie in Untersuchungen der Hand
J. Neubauer
1   Department of Radiology, University Medical Center Freiburg, Germany
,
C. Neubauer
1   Department of Radiology, University Medical Center Freiburg, Germany
,
A. Gerstmair
1   Department of Radiology, University Medical Center Freiburg, Germany
,
T. Krauss
1   Department of Radiology, University Medical Center Freiburg, Germany
,
K. Reising
2   Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Germany
,
H. Zajonc
3   Department of Plastic and Hand Surgery, University Medical Center Freiburg, Germany
,
E. Kotter
1   Department of Radiology, University Medical Center Freiburg, Germany
,
M. Langer
1   Department of Radiology, University Medical Center Freiburg, Germany
,
M. Fiebich
4   Institut of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany
,
J. Voigt
4   Institut of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany
› Author Affiliations
Further Information

Publication History

12 August 2015

27 December 2015

Publication Date:
16 March 2016 (online)

Abstract

Purpose: Comparison of radiation dose of cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) in examinations of the hand.

Materials and Methods: Dose calculations were carried out by means of Monte Carlo simulations in MDCT and CBCT. A corpse hand was examined in a 320-row MDCT scanner and a dedicated extremities CBCT scanner with standard protocols and multiple low-dose protocols. The image quality of the examinations was evaluated by 5 investigators using a Likert scale from 1 (very good) to 5 (very poor) regarding depiction of cortical bone, cancellous bone, joint surfaces, soft tissues and artifacts. For a sum of ratings of all structures < 50 a good overall image quality was expected. The studies with at least good overall image quality were compared with respect to the dose.

Results: The dose of the standard examination was 13.21 (12.96 to 13.46 CI) mGy in MDCT and 7.15 (6.99 to 7.30 CI) mGy in CBCT. The lowest dose in a study with good overall image quality was 4.54 (4.43 to 4.64 CI) mGy in MDCT and 5.72 (5.59 to 5.85 CI) mGy in CBCT.

Conclusion: Although the dose of the standard protocols in the CBCT is lower than in the MDCT, the MDCT can realize a good overall image quality at a lower dose than the CBCT. Dose optimization of CT examination protocols for the hand is useful in both modalities, the MDCT has an even greater potential for optimization.

Key points:

• Low dose examinations of the hand are feasible in CBCT and MDCT.

• In default settings CBCT has a lower dose than MDCT.

• MDCT enables a good image quality at a lower dose than CBCT.

Citation Format:

• Neubauer J, Neubauer C, Gerstmair A et al. Comparison of the Radiation Dose from Cone Beam Computed Tomography and Multidetector Computed Tomography in Examinations of the Hand. Fortschr Röntgenstr 2016; 188: 488 – 493

Zusammenfassung

Ziel: Vergleich der Strahlendosis von Cone-Beam Computertomografie (CBCT) und Multidetektor-Computertomografie (MDCT) bei Untersuchungen der Hand.

Material und Methoden: Dosisbestimmungen wurden mittels Monte Carlo-Simulationen an MDCT und CBCT durchgeführt. Eine Leichenhand wurde in einem 320-Zeilen MDCT-Scanner und einem für die Bildgebung der Extremitäten ausgerichteten CBCT-Scanner mit Standardprotokollen und multiplen Niedrigdosisprotokollen untersucht. Die Bildqualität der Untersuchungen wurde von 5 Untersuchern mittels einer Likert-Skala von 1 (sehr gut) bis 5 (sehr schlecht) bezüglich der Abbildung von Kortikalis, Spongiosa, Gelenkflächen, Weichteilen und Artefakten beurteilt. Bei einer Summe der Bewertungen aller Strukturen < 50 wurde eine gute Gesamtbildqualität angenommen. Die Untersuchungen mit mindestens guter Gesamtbildqualität wurden bezüglich der Dosis verglichen.

Ergebnisse: Die Dosis der Standarduntersuchung war 13,21 (KI 12,96 – 13,46) mGy im MDCT und 7,15 (KI 6,99 – 7,30) mGy im CBCT. Die niedrigste Dosis in einer Untersuchung mit guter Gesamtbildqualität war 4,54 (KI 4,43 – 4,64) mGy im MDCT und 5,72 (KI 5,59 – 5,85) mGy im CBCT.

Schlussfolgerung: Obwohl die Dosis der Standardprotokolle in der CBCT niedriger ist als in der MDCT, kann die MDCT eine gute Gesamtbildqualität bei geringerer Dosis als die CBCT realisieren. Die Dosisoptimierung der CT-Untersuchungsprotokolle für die Hand ist in beiden Modalitäten sinnvoll, wobei die MDCT ein größeres Optimierungspotenzial aufweist.

Deutscher Artikel/German Article

 
  • References

  • 1 Scarfe WC, Farman AG. What is Cone-Beam CT and How Does it Work?. Dent Clin North Am 2008; 52: 707-730
  • 2 Tyndall DA, Price JB, Tetradis S et al. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113: 817-826
  • 3 Kapila S, Conley RS, Harrell WE. The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofacial Radiol 2011; 40: 24-34
  • 4 De Cock J, Mermuys K, Goubau J et al. Cone-beam computed tomography: A new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skeletal Radiol 2012; 41: 93-96
  • 5 Goerke S, Neubauer J, Zajonc H et al. Application Possibilities and Initial Experience with Digital Volume Tomography in Hand and Wrist Imaging. Handchirurgie Mikrochirurgie Plast Chir 2015; 47: 24-31
  • 6 Kyriakou Y, Kolditz D, Langner O et al. Digital Volume Tomography (DVT) and Multislice Spiral CT (MSCT): an Objective Examination of Dose and Image Quality. Fortschr Röntgenstr 2011; 183: 144-153
  • 7 Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol 2007; 17: 2767-2779
  • 8 Orth RC, Wallace MJ, Kuo MD. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 2008; 19: 814-820
  • 9 Neubauer J, Voigt JM, Lang H et al. Comparing the Image Quality of a Mobile Flat-Panel Computed Tomography and a Multidetector Computed Tomography. A Phantom Study Invest Radiol 2014; 49: 491-497
  • 10 Damet J, Sans-Merce M, Miéville F et al. Comparison of organ doses and image quality between CT and flat panel XperCT scans in wrist and inner ear examinations. Radiat Prot Dosimetry 2010; 139: 164-168
  • 11 Loubele M, Bogaerts R, Van Dijck E et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 2009; 71: 461-468
  • 12 Schulze D, Heiland M, Thurmann H et al. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofacial Radiol 2004; 33: 83-86
  • 13 Gosch D, Gosch K, Kahn T. Konversionsfaktoren zur Ermittlung der effektiven Dosis für Patienten aus dem Dosisflächenprodukt bei Röntgendurchleuchtungsuntersuchungen. Fortschr Röntgenstr 2007; 179: 1035-1042
  • 14 Menzel HG, Clement C, DeLuca P. ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP 2009; 39: 1-164
  • 15 Rosslyn S. Digital Imaging and Communications in Medicine (DICOM) Part 14 : Grayscale Standard Display Function. Medicine (Baltimore) 2004; 10: 3-4
  • 16 Demehri S, Muhit A, Zbijewski W et al. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system. Eur Radiol 2015; 25: 1742-1751
  • 17 Pearson K. Note on regression and inheritance in the case of two parents. Proc R Soc London 1895; 58: 240-242
  • 18 Kendall MG. Rank correlation methods. C. Griffin; 1948
  • 19 Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BMJ 1995; 310: 170
  • 20 Stewart N, Gilula L. CT of the wrist: a tailored approach. Radiology 1992; 183: 13-20
  • 21 Chau ACM, Fung K. Comparison of radiation dose for implant imaging using conventional spiral tomography, computed tomography, and cone-beam computed tomography. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology 2009; 107: 559-565
  • 22 Silva MAG, Wolf U, Heinicke F et al. Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop 2008; 133: 640.e1-640.e5
  • 23 Neubauer J, Benndorf M, Lang H et al. Comparison of Multidetector Computed Tomography and Flat-Panel Computed Tomography Regarding Visualization of Cortical Fractures, Cortical Defects. Medicine (Baltimore) 2015; 94: e1231
  • 24 Hofmann E, Schmid M, Lell M et al. Cone beam computed tomography and low-dose multi- slice computed tomography in orthodontics and dentistry A comparative evaluation on image quality and radiation exposure Digitale dentale Volumentomografie und low-dose Mehr- schicht-Computertomografie i. J Orofac Orthop 2014; 75: 384-398
  • 25 Pauwels R, Beinsberger J, Stamatakis H et al. Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114: 127-135
  • 26 Schulze R, Heil U, Groß D et al. Artefacts in CBCT: A review. Dentomaxillofacial Radiol 2011; 40: 265-273
  • 27 Carrino JA, Al Muhit A, Zbijewski W et al. Dedicated cone-beam CT system for extremity imaging. Radiology 2014; 270: 816-824
  • 28 De Vos W, Casselman J, Swennen GRJ. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: A systematic review of the literature. Int J Oral Maxillofac Surg 2009; 38: 609-625