Planta Med 2016; 82(09/10): 761-766
DOI: 10.1055/s-0042-101352
Mini Reviews
Georg Thieme Verlag KG Stuttgart · New York

Marine Metabolites Modulating CB Receptors and TRP Channels

Daniela Rigano
Department of Pharmacy, University of Naples Federico II, Naples, Italy
,
Carmen Formisano
Department of Pharmacy, University of Naples Federico II, Naples, Italy
,
Orazio Taglialatela-Scafati
Department of Pharmacy, University of Naples Federico II, Naples, Italy
› Author Affiliations
Further Information

Publication History

received 23 July 2015
revised 01 December 2015

accepted 05 January 2016

Publication Date:
22 March 2016 (online)

Abstract

Transient receptor potential channels and cannabinoid receptors are deputed to the regulation of sensory, homeostatic, and inflammatory events in the human organism. Therefore, their modulation promises to have relevant applications in important therapeutic areas such as inflammation, pain, and cancer. This review summarizes the contribution of marine research in this relatively young field, highlighting the potential of the chemodiversity carried by marine natural products in the discovery of new ligands.

 
  • References

  • 1 Costa B, Comelli F, Betton I, Colleoni M, Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 and PPAR-gamma receptors and neurotrophic factors. Pain 2008; 139: 541-550
  • 2 Devane WA, Dysarz 3rd FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34: 605-613
  • 3 Pingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol 2007; 179: 155-171
  • 4 Gertsch J. Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system. Planta Med 2008; 74: 638-650
  • 5 Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A. Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci U S A 2008; 105: 9099-9104
  • 6 Chicca A, Caprioglio D, Minassi A, Petrucci V, Appendino G, Taglialatela-Scafati O, Gertsch J. Functionalization of β-caryophyllene generates novel polypharmacology in the endocannabinoid system. ACS Chem Biol 2014; 9: 1499-1507
  • 7 Viana F. Chemosensory properties of the trigeminal system. ACS Chem Neurosci 2011; 2: 38-50
  • 8 Xie XQ, Chen JZ, Billings EM. 3D structural model of the G-protein-coupled cannabinoid CB2 receptor. Proteins 2003; 53: 307-319
  • 9 Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 1990; 87: 1932-1936
  • 10 Showalter VM, Compton DR, Martin BR, Abood ME. Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther 1996; 278: 989-999
  • 11 Di Carlo G, Izzo AA. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs 2003; 12: 39-49
  • 12 Morisset V, Ahluwalia J, Nagy I, Urban L. Possible mechanisms of cannabinoid-induced antinociception in the spinal cord. Eur J Pharmacol 2001; 429: 93-100
  • 13 Zoppi S, Madrigal JL, Caso JR, Garcia-Gutierrez MS, Manzanares J, Leza JC, Garcia-Bueno B. Regulatory role of the cannabinoid CB2 receptor in stress-induced neuroinflammation in mice. Br J Pharmacol 2014; 171: 2814-2826
  • 14 Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946-1949
  • 15 Mechoulam R, Ben-Shabat S, Hanuš L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50: 83-90
  • 16 Labar G, Michaux C. Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers 2007; 4: 1882-1902
  • 17 Ahn K, Johnson DS, Cravatt BF. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin Drug Discov 2009; 4: 763-784
  • 18 Benemei S, Patacchini R, Trevisani M, Geppetti P. TRP channels. Curr Opin Pharmacol 2015; 22: 18-23
  • 19 Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor, a heat-activated ion channel in the pain pathway. Nature 1997; 389: 816-824
  • 20 Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 2002; 9: 229-231
  • 21 Palazzo E, Rossi F, de Novellis V, Maione S. Endogenous modulators of TRP channels. Curr Top Med Chem 2013; 13: 398-407
  • 22 Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell 2002; 108: 705-715
  • 23 Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003; 112: 819-829
  • 24 Mealy NE, Bayes M. Zucapsaicin. Drugs Fut 2005; 30: 230
  • 25 Beck B, Bidaux G, Bavencoffe A, Lemonnier L, Thebault S, Shuba Y, Barrit G, Skryma R, Prevarskaya N. Prospects for prostate cancer imaging and therapy using high-affinity TRPM8 activators. Cell Calcium 2007; 41: 285-294
  • 26 Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 2003; 424: 434-438
  • 27 Cavanaugh EJ, Simkin D, Kim D. Activation of transient receptor potential A1 channels by mustard oil, tetrahydrocannabinol and Ca2+ reveals different functional channel states. Neuroscience 2008; 154: 1467-1476
  • 28 Han B, McPhail KL, Ligresti A, Di Marzo V, Gerwick WH. Semiplenamides A–G, fatty acid amides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena . J Nat Prod 2003; 66: 1364-1368
  • 29 Davies IR, Cheeseman M, Niyadurupola DG, Bull SD. An efficient synthesis of semiplenamide C. Tetrahedron Lett 2005; 33: 5547-5549
  • 30 Gutierre M, Pereira AR, Debonsi HM, Ligresti A, Di Marzo V, Gerwick WH. Cannabinomimetic lipid from a marine cyanobacterium. J Nat Prod 2011; 74: 2313-2317
  • 31 Montaser R, Paul VJ, Luesch H. Marine cyanobacterial fatty acid amides acting on cannabinoid receptors. Chembiochem 2012; 13: 2676-2681
  • 32 Gahalawat S, Pandey SK. Enantioselective total synthesis of (+)-serinolamide A. RSC Adv 2015; 5: 41013-41016
  • 33 Mevers E, Matainaho T, Allaraʼ M, Di Marzo V, Gerwick WH. Mooreamide A: a cannabinomimetic lipid from the marine cyanobacterium Moorea bouillonii . Lipids 2014; 49: 1127-1132
  • 34 Sitachitta N, Gerwick WH. Grenadadiene and grenadamide, cyclopropyl-containing fatty acid metabolites from the marine cyanobacterium Lyngbya majuscula . J Nat Prod 1998; 61: 681-684
  • 35 Qureshi A, Faulkner DJ. Haplosamates A and B: new steroidal sulfamate esters from two Haposclerid sponges. Tetrahedron 1999; 55: 8323-8330
  • 36 Fujita M, Nakao Y, Matsunaga S, Seiki M, Itoh Y, van Soest RWM, Heubes M, Faulkner DJ, Fusetani N. Isolation and structure elucidation of two phosphorylated sterol sulfates, MT1-MMP inhibitors from a marine sponge Cribrochalina sp.: revision of structures of haplosamates A and B. Tetrahedron 2001; 57: 3885-3890
  • 37 Pereira A, Pfeifer TA, Grigliatti TA, Andersen RJ. Functional cell-based screening and saturation transfer double-difference NMR have identified haplosamate A as a cannabinoid receptor agonist. ACS Chem Biol 2009; 4: 139-144
  • 38 Chianese G, Fattorusso E, Taglialatela-Scafati O, Bavestrello G, Calcinai B, Dien HA, Ligresti A, Di Marzo V. Desulfohaplosamate, a new phosphate-containing steroid from Dasychalina sp., is a selective cannabinoid CB2 receptor ligand. Steroids 2011; 76: 998-1002
  • 39 Elsebai MF, Rempel V, Schnakenburg G, Kehraus S, Muller CE, Konig GM. Identification of a potent and selective cannabinoid CB1 receptor antagonist from Auxarthron reticulatum . ACS Med Chem Lett 2011; 2: 866-869
  • 40 Harms H, Rempel V, Kehraus S, Kaiser M, Hufendiek P, Müller CE, König GM. Indoloditerpenes from a marine-derived fungal strain of Dichotomomyces cejpii with antagonistic activity at GPR18 and cannabinoid receptors. J Nat Prod 2014; 77: 673-677
  • 41 Huffman JW, Dai D, Martin BR, Compton DR. Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett 1994; 4: 563-566
  • 42 Appendino G, Minassi A, Taglialatela-Scafati O. Recreational drug discovery: natural products as lead structures for the synthesis of smart drugs. Nat Prod Rep 2014; 31: 880-904
  • 43 Guzii AG, Makarieva TN, Korolkova YV, Andreev YA, Mosharova IV, Tabakmaher KM, Denisenko VA, Dmitrenok PS, Ogurtsova EK, Antonov AS, Lee HS, Grishin EV. Pulchranin A, isolated from the Far-Eastern marine sponge, Monanchora pulchra: the first marine non-peptide inhibitor of TRPV1 channels. Tetrahedron Lett 2013; 54: 1247-1250
  • 44 Makarieva TN, Ogurtsova EK, Korolkova YV, Andreev YA, Mosharova IV, Tabakmakher KM, Guzii AG, Denisenko VA, Dmitrenok PS, Lee HS, Grishin EV, Stonik VA. Pulchranins B and C, new acyclic guanidine alkaloids from the Far-Eastern marine sponge Monanchora pulchra . Nat Prod Commun 2013; 8: 1229-1232
  • 45 Chianese G, Fattorusso E, Putra MY, Calcinai B, Bavestrello G, Moriello AS, De Petrocellis L, Di Marzo V, Taglialatela-Scafati O. Leucettamols, bifunctionalized marine sphingoids, act as modulators of TRPA1 and TRPM8 channels. Mar Drugs 2012; 10: 2435-2447
  • 46 Zierler S, Yao G, Zhang Z, Kuo WC, Poerzgen P, Penner R, Horgen FD, Fleig A. Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem 2011; 286: 39328-39335
  • 47 Chen WL, Turlova E, Sun CLF, Kim JS, Huang S, Zhong X, Guan YY, Wang GL, Rutka JT, Feng ZP, Sun HS. Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3 K/Akt and MEK/ERK signaling pathways. Mar Drugs 2015; 13: 2505-2525
  • 48 Yaroslav AA, Mosharova IV, Kozlov SA, Korolkova YV, Grishin EV. Sea anemone peptides modulate TRPV1 activity and produce analgesia without hyperthermic effect. Toxicon 2012; 60: 109
  • 49 Andreev YA, Kozlov SA, Koshelev SG, Ivanova EA, Monastyrnaya MM, Kozlovskaya EP, Grishin EV. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J Biol Chem 2008; 283: 23914-23921
  • 50 Cuypers E, Peigneur S, Debaveye S, Shiomi K, Tytgat J. TRPV1 channel as new target for marine toxins: example of gigantoxin I, a sea anemone toxin acting via modulation of the PLA2 pathway. Acta Chim Slov 2011; 58: 735-741
  • 51 Mayer AMS. Marine pharmaceuticals: the clinical pipeline. Available at. http://marinepharmacology.midwestern.edu/clinPipeline.htm Accessed July 20, 2015
  • 52 Mayer AMS, Rodríguez DA, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009–2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2013; 11: 2510-2573
  • 53 Elphick MR. The evolution and comparative neurobiology of endocannabinoid signaling. Philos Trans R Soc Lond B Biol Sci 2012; 367: 3201-3215
  • 54 Cuypers E, Yanagihara A, Karlsson E, Tytgat J. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett 2006; 580: 5728-5732
  • 55 Cuypers E, Yanagihara A, Rainier JD, Tytgat J. TRPV1 as a key determinant in ciguatera and neurotoxic shellfish poisoning. Biochem Biophys Res Commun 2007; 361: 214-217