Planta Med 2016; 82(09/10): 857-871
DOI: 10.1055/s-0042-101763
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Combined LC/UV/MS and NMR Strategies for the Dereplication of Marine Natural Products

Ignacio Pérez-Victoria
Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
,
Jesús Martín
Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
,
Fernando Reyes
Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 23. Oktober 2015
revised 22. Dezember 2015

accepted 05. Januar 2016

Publikationsdatum:
22. März 2016 (online)

Abstract

Drug discovery from marine natural products has experienced a revival since the beginning of this century. To be successful in this field, rapid dereplication (identification of already known bioactive compounds) is essential in order to assess the chemical novelty of crude extracts and their fractions. Access to the appropriate state-of-the-art analytical instrumentation and to suitable databases is a fundamental requirement in such a task. A brief survey of the most robust LC/UV/MS- and NMR-based approaches employed for marine natural product dereplication is presented alongside a description of the procedures followed to achieve this goal in our research group.

 
  • References

  • 1 Kiuru P, DʼAuria MV, Muller CD, Tammela P, Vuorela H, Yli-Kauhaluoma J. Exploring marine resources for bioactive compounds. Planta Med 2014; 80: 1234-1246
  • 2 Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov 2009; 8: 69-85
  • 3 Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14: 111-129
  • 4 Vanmiddlesworth F, Cannell RJP. Dereplication and partial identification of natural products. In: Cannell RJP, editor Natural products isolation. Totowa, NJ: Humana Press Inc.; 1998: 279-327
  • 5 Langlykke A. Foreword. In: Bérdy J, editor CRC handbook of antibiotic compounds, Vol. IV (Part 1). Boca Raton, FL: CRC Press; 1980
  • 6 Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4: 206-220
  • 7 Blunt JW, Munro MHG. Data, 1 H-NMR databases, data manipulation. Phytochem Rev 2013; 12: 435-447
  • 8 Dictionary of Marine Natural Products (DMNP 2014). Chapman & Hall/CRC. Available at. http://dmnp.chemnetbase.com/intro/index.jsp Accessed October 20, 2015
  • 9 MarinLit. A database of the marine natural products literature. RSC. Available at. http://pubs.rsc.org/marinlit/ Accessed October 20, 2015
  • 10 Corley DG, Durley RC. Strategies for database dereplication of natural products. J Nat Prod 1994; 57: 1484-1490
  • 11 Cordell GA, Shin YG. Finding the needle in the haystack. The dereplication of natural product extracts. Pure Appl Chem 1999; 71: 1089-1094
  • 12 Bradshaw J, Butina D, Dunn AJ, Green RH, Hajek M, Jones MM, Lindon JC, Sidebottom PJ. A rapid and facile method for the dereplication of purified natural products. J Nat Prod 2001; 64: 1541-1544
  • 13 Dinan L. Dereplication and partial identification of natural products. In: Satyavit D, Sarker ZL, Gray AI, editors Natural products isolation. 2nd edition. Totowa, NJ: Humana Press Inc.; 2006: 297-321
  • 14 Ito T, Masubuchi M. Dereplication of microbial extracts and related analytical technologies. J Antibiot (Tokyo) 2014; 67: 353-360
  • 15 Halabalaki M, Vougogiannopoulou K, Mikros E, Skaltsounis AL. Recent advances and new strategies in the NMR-based identification of natural products. Curr Opin Biotechnol 2014; 25: 1-7
  • 16 Wolfender JL, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 2015; 1382: 136-164
  • 17 Nielsen KF, Larsen TO. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol 2015; 6: 71
  • 18 Williams RB, OʼNeil-Johnson M, Williams AJ, Wheeler P, Pol R, Moser A. Dereplication of natural products using minimal NMR data inputs. Org Biomol Chem 2015; 13: 9957-9962
  • 19 Gaudêncio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 2015; 32: 779-810
  • 20 Blunt J, Munro M, Upjohn M. The role of databases in marine natural products research. In: Fattorusso E, Gerwick WH, Taglialatela-Scafati O, editors Handbook of marine natural products. Rotterdam: Springer Netherlands; 2012: 389-421
  • 21 Blunt JW, Munro MHG. Is there an ideal database for natural products research?. In: Osbourn A, Goss RJM, Carter GT, editors Natural products: discourse, diversity, and design. Oxford, UK: John Wiley & Sons, Inc.; 2014: 413-431
  • 22 Lang G, Mayhudin NA, Mitova MI, Sun L, van der Sar S, Blunt JW, Cole AL, Ellis G, Laatsch H, Munro MH. Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 2008; 71: 1595-1599
  • 23 Mitova MI, Murphy AC, Lang G, Blunt JW, Cole AL, Ellis G, Munro MH. Evolving trends in the dereplication of natural product extracts. 2. The isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus Sepedonium chrysospermum . J Nat Prod 2008; 71: 1600-1603
  • 24 Sultan S, Sun L, Blunt JW, Cole ALJ, Munro MHG, Ramasamy K, Weber JFF. Evolving trends in the dereplication of natural product extracts. 3: further lasiodiplodins from Lasiodiplodia theobromae, an endophyte from Mapania kurzii . Tetrahedron Lett 2014; 55: 453-455
  • 25 Chemical Abstracts Service (CAS) Registry, a division of the American Chemical Society. Available at. https://www.cas.org/content/chemical-substances Accessed October 20, 2015
  • 26 SciFinder, a CAS solution. Available at. http://www.cas.org/products/scifinder Accessed October 20, 2015
  • 27 REAXYS, Elsevier. Available at. http://www.elsevier.com/solutions/reaxys Accessed October 20, 2015
  • 28 Williams AJ. Public chemical compound databases. Curr Opin Drug Discov Devel 2008; 11: 393-404
  • 29 Apodaca R. Sixty-four free chemistry databases. Available at http://depth-first.com/articles/2011/10/12/sixty-four-free-chemistry-databases/. Accessed October 20, 2015. http://depth-first.com/articles/2011/10/12/sixty-four-free-chemistry-databases/ Accessed October 20, 2015
  • 30 PubChem, NIH. Available at. http://pubchem.ncbi.nlm.nih.gov Accessed October 20, 2015
  • 31 Bolton EE, Wang Y, Thiessen PA, Bryant SH. Chapter 12 – PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 2008; 4: 217-241
  • 32 ChemSpider, RSC. Available at. http://www.chemspider.com/ Accessed October 20, 2015
  • 33 Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 2013; 8: e62839
  • 34 UNPD, Universal Natural Products Database of Peking University. Available at. http://pkuxxj.pku.edu.cn/UNPD/ Accessed October 20, 2015
  • 35 Buckingham J editor. Dictionary of natural products on DVD v24: 1. Boca Raton: Chapman & Hall/CRC; 2015
  • 36 Dictionary of Natural Products (DNP v24.1). Available at. http://dnp.chemnetbase.com/intro/index.jsp Accessed October 20, 2015
  • 37 The DNP NMR Features database, available up to version 22.1, was prepared by John W Blunt, University of Canterbury, New Zealand, to whom enquiries about its preparation and use should be directed. john.blunt@canterbury.ac.nz.
  • 38 Laatsch H. AntiBase 2014: the natural compound identifier. Available at. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527338411.html Accessed October 20, 2015
  • 39 SpecInfo, Wiley Online Library Spectroscopy. Available at. http://www.wiley-vch.de/stmdata/specinfo.php Accessed October 20, 2015
  • 40 The AntiMarin database, a combination database formed from AntiBase and MarinLit, was prepared by John W Blunt, University of Canterbury, New Zealand, to whom enquiries about its preparation and use should be directed. john.blunt@canterbury.ac.nz.
  • 41 Lucas X, Senger C, Erxleben A, Grüning BA, Döring K, Mosch J, Flemming S, Günther S. StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucleic Acids Res 2013; 41: D1130-D1136
  • 42 StreptomeDB 2.0. Available at. http://www.pharmaceutical-bioinformatics.de/streptomedb/ Accessed October 20, 2015
  • 43 Allen F, Greiner R, Wishart D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 2014; 11: 98-110
  • 44 Marvin Applets. Available at. https://www.chemaxon.com/marvin/ Accessed October 20, 2015
  • 45 ACD/NMR Predictors (ACD/Labs). Available at. http://www.acdlabs.com/products/adh/nmr/nmr_pred/ Accessed October 20, 2015
  • 46 ACD/Structure Elucidator Suite (ACD/Labs). Available at. http://www.acdlabs.com/products/com_iden/elucidation/struc_eluc/ Accessed October 20, 2015
  • 47 MICRONMR (Shanghai Micronmr Infor Technology Co., Ltd.) Available at. http://www.nmrdata.com:90/masterInfor_introduce.aspx Accessed October 20, 2015
  • 48 Yang Z, Wu Y, Zhou H, Cao X, Jiang X, Wang K, Wu S. A novel strategy for screening new natural products by a combination of reversed-phase liquid chromatography fractionation and 13 C NMR pattern recognition: the discovery of new anti-cancer flavone dimers from Dysosma versipellis (Hance). RSC Adv 2015; 5: 77553-77564
  • 49 Hayamizu KY, Asakura K, Kurimoto T. An open access NMR database for organic natural products “CH-NMR-NP”. Prague, Czech Republic: EUROMAR; 2015
  • 50 Hayamizu KY, Asakura K, Kurimoto T. An open access NMR database for organic natural products “CH-NMR-NP”. 57th Experimental Nuclear Magnetic Resonance Conference, Pittsburgh, PA; 2015.
  • 51 Hayamizu K. [On an NMR database for natural products “CH-NMR-NP”]. Kagaku to Seibutsu 2011; 49: 250-255
  • 52 Hayamizu K. Natural Product NMR-DB “CH-NMR-NP”. Available at. https://www.j-resonance.com/en/nmrdb/ Accessed October 20, 2015
  • 53 López-Pérez JL, Therón R, del Olmo E, Díaz D. NAPROC-13: a database for the dereplication of natural product mixtures in bioassay-guided protocols. Bioinformatics 2007; 23: 3256-3257
  • 54 NAPROC-13. Available at. http://c13.usal.es/c13/usuario/views/inicio.jsp?lang=es&country=ES Accessed October 20, 2015
  • 55 Mihaleva VV, te Beek TA, van Zimmeren F, Moco S, Laatikainen R, Niemitz M, Korhonen SP, van Driel MA, Vervoort J. MetIDB: A publicly accessible database of predicted and experimental 1 H NMR spectra of flavonoids. Anal Chem 2013; 85: 8700-8707
  • 56 MetIDB. Available at. http://metidb.org/home Accessed October 20, 2015
  • 57 Fischedick JT, Johnson SR, Ketchum RE, Croteau RB, Lange BM. NMR spectroscopic search module for Spektraris, an online resource for plant natural product identification – Taxane diterpenoids from Taxus × media cell suspension cultures as a case study. Phytochemistry 2015; 113: 87-95
  • 58 Spektraris NMR. Available at. http://langelabtools.wsu.edu/nmr/ Accessed October 20, 2015
  • 59 Steinbeck C, Kuhn S. NMRShiftDB – compound identification and structure elucidation support through a free community-built web database. Phytochemistry 2004; 65: 2711-2717
  • 60 NMRShiftDB. Available at. http://nmrshiftdb.nmr.uni-koeln.de/ Accessed October 20, 2015
  • 61 Biological Magnetic Resonance Databank (BMRB). Available at. http://www.bmrb.wisc.edu/metabolomics/ Accessed October 20, 2015
  • 62 Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL. BioMagResBank. Nucleic Acids Res 2008; 36: D402-D408
  • 63 Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A. HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res 2013; 41: D801-D807
  • 64 The Human Metabolome Database (HMDB). Available at. http://www.hmdb.ca/ Accessed October 20, 2015
  • 65 Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL. Metabolite identification via the Madison metabolomics consortium database. Nat Biotechnol 2008; 26: 162-164
  • 66 Madison Metabolomics Consortium Database (MMCD). Available at. http://mmcd.nmrfam.wisc.edu/ Accessed October 20, 2015
  • 67 Bingol K, Zhang F, Bruschweiler-Li L, Brüschweiler R. TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database. Anal Chem 2012; 84: 9395-9401
  • 68 COLMAR 13 C-TOCCATA: a carbon TOCSY NMR metabolomics database. Available at. http://spin.ccic.ohio-state.edu/index.php/toccata/index Accessed October 20, 2015
  • 69 Bingol K, Bruschweiler-Li L, Li DW, Brüschweiler R. Customized metabolomics database for the analysis of NMR 1 H-1 H TOCSY and 13 C-1 H HSQC-TOCSY spectra of complex mixtures. Anal Chem 2014; 86: 5494-5501
  • 70 COLMAR 1 H(13 C)-TOCCATA: customized metabolomics database for the analysis of NMR 1 H-1 H TOCSY and 13 C-1 H HSQC-TOCSY spectra of complex mixtures. Available at. http://spin.ccic.ohio-state.edu/index.php/toccata2/index Accessed October 20, 2015
  • 71 Bingol K, Li DW, Bruschweiler-Li L, Cabrera OA, Megraw T, Zhang F, Brüschweiler R. Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13 C-1 H HSQC spectra. ACS Chem Biol 2015; 10: 452-459
  • 72 COLMAR 13 C-1 H HSQC query. Available at. http://spin.ccic.ohio-state.edu/index.php/hsqc/index Accessed January 20, 2016
  • 73 Johnson SR, Lange BM. Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 2015; 3: 22
  • 74 Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 2010; 45: 703-714
  • 75 MassBank. Available at. http://www.massbank.jp/en/database.html Accessed October 20, 2015
  • 76 Smith CA, OʼMaille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN: a metabolite mass spectral database. Ther Drug Monit 2005; 27: 747-751
  • 77 METLIN. Available at. https://metlin.scripps.edu/index.php Accessed October 20, 2015
  • 78 Nielsen KF, Frisvad JC. DTU mycotoxin-fungal secondary metabolite MS/HRMS library. Available at. http://www.bio.dtu.dk/english/Research/Platforms/Metabolom/MSMSLib Accessed October 20, 2015
  • 79 GNPS Public Spectral Libraries. Available at. http://gnps.ucsd.edu/ProteoSAFe/libraries.jsp Accessed October 20, 2015
  • 80 Strege MA. Hydrophilic interaction chromatography-electrospray mass spectrometry analysis of polar compounds for natural product drug discovery. Anal Chem 1998; 70: 2439-2445
  • 81 Frisvad JC, Thrane U. Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diodearray detection). J Chromatogr A 1987; 404: 195-214
  • 82 Nielsen KF, Smedsgaard J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 2003; 1002: 111-136
  • 83 Hill DW, Kelley TR, Laugner KJ, Miller KW. Determination of mycotoxins by gradient high-performance liquid chromatography using an alkylphenone retention index system. Anal Chem 1984; 56: 2576-2579
  • 84 Stanstrup J, Neumann S, Vrhovšek U. PredRet: prediction of retention time by direct mapping between multiple chromatographic systems. Anal Chem 2015; 87: 9421-9428
  • 85 Boswell PG, Schellenberg JR, Carr PW, Cohen JD, Hegeman AD. A study on retention “projection” as a supplementary means for compound identification by liquid chromatography-mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. J Chromatogr A 2011; 1218: 6732-6741
  • 86 Abate-Pella D, Freund DM, Ma Y, Simón-Manso Y, Hollender J, Broeckling CD, Huhman DV, Krokhin OV, Stoll DR, Hegeman AD, Kind T, Fiehn O, Schymanski EL, Prenni JE, Sumner LW, Boswell PG. Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. J Chromatogr A 2015; 1412: 43-51
  • 87 Cao M, Fraser K, Huege J, Featonby T, Rasmussen S, Jones C. Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics. Metabolomics 2015; 11: 696-706
  • 88 Eugster PJ, Boccard J, Debrus B, Bréant L, Wolfender JL, Martel S, Carrupt PA. Retention time prediction for dereplication of natural products (CxHyOz) in LC-MS metabolite profiling. Phytochemistry 2014; 108: 196-207
  • 89 Creek DJ, Jankevics A, Breitling R, Watson DG, Barrett MP, Burgess KEV. Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem 2011; 83: 8703-8710
  • 90 Seger C, Sturm S, Stuppner H. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques-state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep 2013; 30: 970-987
  • 91 Wolfender JL. HPLC in natural product analysis: the detection issue. Planta Med 2009; 75: 719-734
  • 92 Potterat O, Hamburger M. Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays. Nat Prod Rep 2013; 30: 546-564
  • 93 Potterat O, Hamburger M. Combined use of extract libraries and HPLC-based activity profiling for lead discovery: potential, challenges, and practical considerations. Planta Med 2014; 80: 1171-1181
  • 94 Lang G, Mitova MI, Ellis G, van der Sar S, Phipps RK, Blunt JW, Cummings NJ, Cole ALJ, Munro MHG. Bioactivity profiling using HPLC/microtiter-plate analysis: application to a New Zealand marine alga-derived fungus, Gliocladium sp. J Nat Prod 2006; 69: 621-624
  • 95 Johnson TA, Sohn J, Inman WD, Estee SA, Loveridge ST, Vervoort HC, Tenney K, Liu J, Ang KKH, Ratnam J, Bray WM, Gassner NC, Shen YY, Lokey RS, McKerrow JH, Boundy-Mills K, Nukanto A, Kanti A, Julistiono H, Kardono LBS, Bjeldanes LF, Crews P. Natural product libraries to accelerate the high-throughput discovery of therapeutic leads. J Nat Prod 2011; 74: 2545-2555
  • 96 Bugni TS, Richards B, Bhoite L, Cimbora D, Harper MK, Ireland CM. Marine natural product libraries for high-throughput screening and rapid drug discovery. J Nat Prod 2008; 71: 1095-1098
  • 97 Bohni N, Cordero-Maldonado ML, Maes J, Siverio-Mota D, Marcourt L, Munck S, Kamuhabwa AR, Moshi MJ, Esguerra CV, de Witte PAM, Crawford AD, Wolfender JL. Integration of microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products. PLoS One 2013; 8: e64006
  • 98 Challal S, Buenafe OEM, Queiroz EF, Maljevic S, Marcourt L, Bock M, Kloeti W, Dayrit FM, Harvey AL, Lerche H, Esguerra CV, De Witte PAM, Wolfender JL, Crawford AD. Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum. ACS Chem Neurosci 2014; 5: 993-1004
  • 99 Challal S, Bohni N, Buenafe OE, Esguerra CV, De Witte PAM, Wolfender JL, Crawford AD. Zebrafish bioassay-guided microfractionation for the rapid in vivo identification of pharmacologically active natural products. Chimia (Aarau) 2012; 66: 229-232
  • 100 Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO. Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 2011; 74: 2338-2348
  • 101 El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J Nat Prod 2013; 76: 1709-1716
  • 102 Zink D, Dufresne C, Liesch J, Martín J. Automated LC-MS analysis of natural products: extraction of UV, MS and retention time data for component identification and characterization. Proceedings of the 50th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, FL; 2002.
  • 103 Zink D, Dufresne C, Liesch J, Martín J. Identification/dereplication of natural products by LC-UV-MS. Spectral search parameters. Small Molecule Science Conference (COSMOS), Bristol, RI; 2005. 2005
  • 104 Hansen ME, Smedsgaard J, Larsen TO. X-hitting: an algorithm for novelty detection and dereplication by UV spectra of complex mixtures of natural products. Anal Chem 2005; 77: 6805-6817
  • 105 Larsen TO, Hansen MAE. Dereplication and discovery of natural products by UV spectroscopy. In: Colegate SM, Molyneux RJ, editors Bioactive natural products. Detection, isolation and structural determination. 2nd edition. Boca Raton, FL: CRC Press; 2008: 221-244
  • 106 Wehrens R, Carvalho E, Fraser PD. Metabolite profiling in LC-DAD using multivariate curve resolution: the alsace package for R. Metabolomics 2014; 11: 143-154
  • 107 Larsen TO, Petersen BO, Duus JØ, Sørensen D, Frisvad JC, Hansen ME. Discovery of new natural products by application of X-hitting, a novel algorithm for automated comparison of full UV spectra, combined with structural determination by NMR spectroscopy. J Nat Prod 2005; 68: 871-874
  • 108 Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 2006; 7: 234
  • 109 Fredenhagen A, Derrien C, Gassmann E. An MS/MS library on an ion-trap instrument for efficient dereplication of natural products. Different fragmentation patterns for [M + H]+ and [M + Na]+ ions. J Nat Prod 2005; 68: 385-391
  • 110 Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF. Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 2014; 406: 1933-1943
  • 111 Kildgaard S, Mansson M, Dosen I, Klitgaard A, Frisvad JC, Larsen TO, Nielsen KF. Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. Mar Drugs 2014; 12: 3681-3705
  • 112 Scheubert K, Hufsky F, Böcker S. Computational mass spectrometry for small molecules. J Cheminform 2013; 5: 12
  • 113 Hufsky F, Scheubert K, Böcker S. Computational mass spectrometry for small-molecule fragmentation. Trends Anal Chem 2014; 53: 41-48
  • 114 Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Anal Chem 2015; 69: 52-61
  • 115 Mass Frontier Spectral Interpretation Software (ThermoScientific). Available at. http://www.thermoscientific.com/en/product/mass-frontier-7-0-spectral-interpretation-software.html Accessed October 20, 2015
  • 116 ACD/MS Fragmenter (ACD/Labs). Available at. http://www.acdlabs.com/products/adh/ms/ms_frag/ Accessed October 20, 2015
  • 117 MetFrag. Available at. http://msbi.ipb-halle.de/MetFrag/ Accessed October 20, 2015
  • 118 Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 2010; 11: 148
  • 119 FingerID. Available at. http://research.ics.aalto.fi/kepaco/fingerid/index.html Accessed October 20, 2015
  • 120 Heinonen M, Shen H, Zamboni N, Rousu J. Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics 2012; 28: 2333-2341
  • 121 Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res 2014; 42: W94-W99
  • 122 CFM-ID. Available at. http://cfmid.wishartlab.com/ Accessed October 20, 2015
  • 123 MAGMa. Available at. http://www.emetabolomics.org/magma Accessed October 20, 2015
  • 124 Ridder L, van der Hooft JJJ, Verhoeven S, de Vos RCH, Bino RJ, Vervoort J. Automatic chemical structure annotation of an LC-MSn based metabolic profile from green tea. Anal Chem 2013; 85: 6033-6040
  • 125 Ridder L, Van Der Hooft JJJ, Verhoeven S, De Vos RCH, Van Schaik R, Vervoort J. Substructure-based annotation of high-resolution multistage MSn spectral trees. Rapid Commun Mass Spectrom 2012; 26: 2461-2471
  • 126 Ridder L, van der Hooft JJJ, Verhoeven S, de Vos RCH, Vervoort J, Bino RJ. In silico prediction and automatic LC-MSn annotation of green tea metabolites in urine. Anal Chem 2014; 86: 4767-4774
  • 127 CSI : FingerID. Available at. http://www.csi-fingerid.org/ Accessed October 20, 2015
  • 128 Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI : FingerID. Proc Natl Acad Sci U S A 2015; 112: 12580-12585
  • 129 Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, De Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC. Molecular networking as a dereplication strategy. J Nat Prod 2013; 76: 1686-1699
  • 130 Jaroszewski JW. Hyphenated NMR methods in natural products research, part 1: direct hyphenation. Planta Med 2005; 71: 691-700
  • 131 Jaroszewski JW. Hyphenated NMR methods in natural products research, Part 2: HPLC-SPE-NMR and other new trends in NMR hyphenation. Planta Med 2005; 71: 795-802
  • 132 Seger C, Godejohann M, Tseng LH, Spraul M, Girtler A, Sturm S, Stuppner H. LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: identification of isobaric iridoid glycoside regioisomers from Harpagophytum procumbens. Anal Chem 2005; 77: 878-885
  • 133 Jansma A, Chuan T, Albrecht RW, Olson DL, Peck TL, Geierstanger BH. Automated microflow NMR: routine analysis of five-microliter samples. Anal Chem 2005; 77: 6509-6515
  • 134 Lambert M, Wolfender JL, Stærk D, Christensen SB, Hostettmann K, Jaroszewski JW. Identification of natural products using HPLC-SPE combined with CapNMR. Anal Chem 2007; 79: 727-735
  • 135 Schroeder FC, Gronquist M. Extending the scope of NMR spectroscopy with microcoil probes. Angew Chem Int Ed Engl 2006; 45: 7122-7131
  • 136 Hu J, Eldridge GR, Yu Y, OʼNeil-Johnson M. High-throughput natural product chemistry methods and the application of the capillary NMR probe. Prog Chem 2008; 20: 429-440
  • 137 Hilton BD, Martin GE. Investigation of the experimental limits of small-sample heteronuclear 2D NMR. J Nat Prod 2010; 73: 1465-1469
  • 138 Molinski TF. NMR of natural products at the ʼnanomole-scaleʼ. Nat Prod Rep 2010; 27: 321-329
  • 139 ACD/Spectrus DB (ACD/Labs). Available at. http://www.acdlabs.com/products/spectrus/db/ Accessed October 20, 2015
  • 140 MNova DB (Mestrelab Research). Available at. http://mestrelab.com/software/mnova/db/ Accessed October 20, 2015
  • 141 AMIX (Bruker Biospin). Available at. https://www.bruker.com/products/mr/nmr/nmr-software/software/amix/overview.html Accessed October 20, 2015
  • 142 Johansen KT, Wubshet SG, Nyberg NT. HPLC-NMR revisited: using time-slice high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance with database-assisted dereplication. Anal Chem 2013; 85: 3183-3189
  • 143 ACD/Labs NMR Databases. Available at. http://www.acdlabs.com/products/adh/spectrusprocessor/wiley_nmr/ Accessed October 20, 2015
  • 144 KnowItAll NMR Spectral Library (Bio-Rad). Available at. http://www.bio-rad.com/es-es/product/nmr-spectral-databases Accessed October 20, 2015
  • 145 Robien W. CSEARCH. Available at. http://nmrpredict.orc.univie.ac.at/ Accessed October 20, 2015
  • 146 Hubert J, Nuzillard JM, Purson S, Hamzaoui M, Borie N, Reynaud R, Renault JH. Identification of natural metabolites in mixture: a pattern recognition strategy based on 13 C NMR. Anal Chem 2014; 86: 2955-2962
  • 147 Tsipouras A, Ondeyka J, Dufresne C, Lee S, Salituro G, Tsou N, Goetz M, Singh SB, Kearsley SK. Using similarity searches over databases of estimated 13 C NMR spectra for structure identification of natural product compounds. Anal Chim Acta 1995; 316: 161-171
  • 148 Smith SK, Cobleigh J, Svetnik V. Evaluation of a 1 H-13 C NMR spectral library. J Chem Inf Comput Sci 2001; 41: 1463-1469
  • 149 NMRanalyst. Available at. http://www.sciencesoft.net/NMRanalyst.html Accessed October 20, 2015
  • 150 Dunkel R, Wu X. Identification of organic molecules from a structure database using proton and carbon NMR analysis results. J Magn Reson 2007; 188: 97-110
  • 151 Bremser W, Wagner H, Franke B. Fast searching for identical 13 C NMR spectra via inverted files. Org Magn Reson 1981; 15: 178-187
  • 152 Robien W. CSEARCH for PubChem. Available at. http://nmrpredict.orc.univie.ac.at/similar/eval.php Accessed October 20, 2015
  • 153 Fundación MEDINA. Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Available at. http://www.medinadiscovery.com/ Accessed October 20, 2015
  • 154 Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F. Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 2011; 38: 375-389
  • 155 Genilloud O, Vicente F. Strategies to discover novel antimicrobials to cope with emerging medical needs. In: Marinelli F, Genilloud O, editors Antimicrobials: new and old molecules in the fight against multi-resistant bacteria. Berlin: Springer-Verlag; 2014: 327-360
  • 156 Genilloud O. The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek 2014; 106: 173-188
  • 157 Annang F, Pérez-Moreno G, García-Hernández R, Cordon-Obras C, Martín J, Tormo JR, Rodríguez L, De Pedro N, Gómez-Pérez V, Valente M, Reyes F, Genilloud O, Vicente F, Castanys S, Ruiz-Pérez LM, Navarro M, Gamarro F, González-Pacanowska D. High-throughput screening platform for natural product-based drug discovery against 3 neglected tropical diseases: human African trypanosomiasis, leishmaniasis, and chagas disease. J Biomol Screen 2015; 20: 82-91
  • 158 Martín J, Crespo G, González-Menéndez V, Pérez-Moreno G, Sánchez-Carrasco P, Pérez-Victoria I, Ruiz-Pérez LM, González-Pacanowska D, Vicente F, Genilloud O, Bills GF, Reyes F. MDN-0104, an antiplasmodial betaine lipid from Heterospora chenopodii. J Nat Prod 2014; 77: 2118-2123
  • 159 Cautain B, De Pedro N, Garzón VM, De Escalona MM, González Menéndez V, Tormo JR, Martin J, El Aouad N, Reyes F, Asensio F, Genilloud O, Vicente F, Link W. High-content screening of natural products reveals novel nuclear export inhibitors. J Biomol Screen 2014; 19: 57-65
  • 160 Monteiro MC, De La Cruz M, Cantizani J, Moreno C, Tormo JR, Mellado E, De Lucas JR, Asensio F, Valiante V, Brakhage AA, Latgé JP, Genilloud O, Vicente F. A new approach to drug discovery: high-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J Biomol Screen 2012; 17: 542-549
  • 161 PharmaSea. Available at. http://www.pharma-sea.eu/pharmasea.html Accessed October 20, 2015
  • 162 Stein SE. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 1999; 10: 770-781
  • 163 AMDIS. Available at. http://www.amdis.net/ Accessed October 20, 2015
  • 164 Lacret R, Oves-Costales D, Gómez C, Díaz C, De La Cruz M, Pérez-Victoria I, Vicente F, Genilloud O, Reyes F. New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar Drugs 2015; 13: 128-140
  • 165 Tong H, Bell D, Tabei K, Siegel MM. Automated data massaging, interpretation, and e-mailing modules for high throughput open access mass spectrometry. J Am Soc Mass Spectrom 1999; 10: 1174-1187
  • 166 SmartFormula 3D (Bruker Daltonics). Available at. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/Separations_MassSpectrometry/Literature/literature/TechNotes/TN-26_smartformula3D_12-2014_eBook.pdf Accessed October 20, 2015
  • 167 Motohashi K, Takagi M, Shin-Ya K. Tetrapeptides possessing a unique skeleton, JBIR-34 and JBIR-35, isolated from a sponge-derived actinomycete, Streptomyces sp. Sp080513GE-23. J Nat Prod 2010; 73: 226-228
  • 168 Martín J, Pérez-Victoria I, González V, de Pedro N, Vicente F, Bills G, Reyes F. Applying LC-MS de-replication strategies for the discovery of new natural products. Planta Med 2012; 78: PI77
  • 169 Takada K, Ninomiya A, Naruse M, Sun Y, Miyazaki M, Nogi Y, Okada S, Matsunaga S. Surugamides A–E, cyclic octapeptides with four D-amino acid residues, from a marine Streptomyces sp.: LC-MS-aided inspection of partial hydrolysates for the distinction of D- and L-amino acid residues in the sequence. J Org Chem 2013; 78: 6746-6750
  • 170 Pesic A, Baumann HI, Kleinschmidt K, Ensle P, Wiese J, Süssmuth RD, Imhoff JF. Champacyclin, a new cyclic octapeptide from Streptomyces strain C42 isolated from the Baltic Sea. Mar Drugs 2013; 11: 4834-4857
  • 171 Schmidt JS, Lauridsen MB, Dragsted LO, Nielsen J, Staerk D. Development of a bioassay-coupled HPLC-SPE-ttNMR platform for identification of α-glucosidase inhibitors in apple peel (Malus × domestica Borkh.). Food Chem 2012; 135: 1692-1699
  • 172 Claridge TDW. High-resolution NMR techniques in organic chemistry. 2nd. edition. Oxford, UK: Elsevier; 2009: 303-334
  • 173 Antalek B. Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results. Concepts Magn Reson 2002; 14: 225-258
  • 174 Pérez-Victoria I. DOSYMNPs: Novel applications of diffusion NMR spectroscopy in microbial natural products research. Available at. http://cordis.europa.eu/project/rcn/99978_en.html Accessed October 20, 2015
  • 175 Evans R, Deng Z, Rogerson AK, McLachlan AS, Richards JJ, Nilsson M, Morris GA. Quantitative interpretation of diffusion-ordered NMR spectra: can we rationalize small molecule diffusion coefficients?. Angew Chem Int Ed Engl 2013; 52: 3199-3202
  • 176 Pérez-Victoria I, Crespo G, Reyes F. Dereplication of natural products in mixtures using PFG diffusion NMR combined with an in-house 1 H NMR spectra database. Small Molecule NMR Conference (SMASH), Santiago de Compostela. 2013