Planta Med 2016; 82(06): 559-572
DOI: 10.1055/s-0042-101943
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

A First Step in the Quest for the Active Constituents in Filipendula ulmaria (Meadowsweet): Comprehensive Phytochemical Identification by Liquid Chromatography Coupled to Quadrupole-Orbitrap Mass Spectrometry

Sebastiaan Bijttebier
1   University of Antwerp, Natural Products & Food Research and Analysis (NatuRA), Antwerp, Belgium
,
Anastasia Van der Auwera
1   University of Antwerp, Natural Products & Food Research and Analysis (NatuRA), Antwerp, Belgium
,
Stefan Voorspoels
2   Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology (SCT), Mol, Belgium
,
Bart Noten
2   Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology (SCT), Mol, Belgium
,
Nina Hermans
1   University of Antwerp, Natural Products & Food Research and Analysis (NatuRA), Antwerp, Belgium
,
Luc Pieters
1   University of Antwerp, Natural Products & Food Research and Analysis (NatuRA), Antwerp, Belgium
,
Sandra Apers
1   University of Antwerp, Natural Products & Food Research and Analysis (NatuRA), Antwerp, Belgium
› Author Affiliations
Further Information

Publication History

received 21 August 2015
revised 07 December 2015

accepted 14 December 2015

Publication Date:
04 February 2016 (online)

Abstract

Filipendula ulmaria (meadowsweet) is traditionally used for the treatment of inflammatory diseases and as a diuretic and antirheumatic. Extracts of Filipendulae herba are on the market in the European Union as food supplements. Nevertheless, its active constituents remain to be revealed. During this study, the phytochemical composition of Filipendulae Ulmariae Herba was comprehensively characterised for the first time with two complementary generic ultrahigh-performance liquid chromatography-photodiode array-accurate mass mass spectrometry methods. Selective ion fragmentation experiments with a hybrid quadrupole-orbital trap mass spectrometer significantly contributed to compound identification: a total of 119 compounds were tentatively identified, 69 new to F. ulmaria. A rich diversity of phenolic constituents was detected and only a few non-phenolic phytochemicals were observed. Metabolisation and pharmacological studies should be conducted to investigate which of these constituents or metabolites there of contribute to the activity of F. ulmaria after oral intake.

 
  • References

  • 1 European Medicines Agency. Assessment report on Filipendula ulmaria (L.) Maxim., herba and Filipendula ulmaria (L.) Maxim., flos. Available at. http://www.ema.europa.eu/ema Accessed December 3, 2015
  • 2 Harbourne N, Jacquier JC, OʼRiordan D. Optimisation of the aqueous extraction conditions of phenols from meadowsweet (Filipendula ulmaria L.) for incorporation into beverages. Food Chem 2009; 116: 722-727
  • 3 Okuda T, Yoshida T, Hatano T, Iwasaki M, Kubo M, Orime T, Yoshizaki M, Naruhashi N. Hydrolysable tannins as chemotaxonomic markers in the Rosaceae. Phytochemistry 1992; 31: 3091-3096
  • 4 Pemp E, Reznicek G, Krenn L. Fast quantification of flavonoids in Filipendulae Ulmariae Flos by HPLC/ESI-MS using a nonporous stationary phase. J Anal Chem 2007; 62: 669-673
  • 5 Papp I, Simándi B, Blazics B, Alberti Á, Héthelyi É, Szöke É, Kéry Á. Monitoring volatile and non-volatile salicylates in Filipendula ulmaria by different chromatographic techniques. Chromatogr Suppl 2008; 68: S125-S129
  • 6 Fecka I. Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem Anal 2009; 20: 177-190
  • 7 Shilova IV, Semenov AA, Suslov NI, Korotkova EI, Vtorushina AN, Belyakova VV. Chemical composition and biological activity of a fraction of meadowsweet extract. Pharm Chem J 2009; 43: 185-190
  • 8 Barros L, Alves CT, Dueñas M, Silva S, Oliveira R, Carvalho AM, Henriques M, Santos-Buelga C, Ferreira ICFR. Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC-DAD-ESI/MS and evaluation of antifungal properties. Ind Crops Prod 2013; 44: 104-110
  • 9 Olennikov DN, Kruglova MY. A new quercetin glycoside and other phenolic compounds from the genus Filipendula . Chem Nat Compd 2013; 49: 610-616
  • 10 Barros L, Cabrita L, Vilas Boas M, Carvalho AM, Ferreira ICFR. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem 2011; 127: 1600-1608
  • 11 Halkes SBA. Filipendula ulmaria – a study on the immunomodulary activity of extracts and constituents [dissertation]. Utrecht: Universiteit Utrecht; 1998
  • 12 Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18: 1818-1892
  • 13 Butterweck V, Nahrstedt A. What is the best strategy for preclinical testing of botanicals? A critical perspective. Planta Med 2012; 78: 747-754
  • 14 Mills S, Bone K. Principles and practice of phytotherapy. Modern herbal medicine. Edinburgh: Churchill Livingstone; 2000
  • 15 Ojanperä I, Kolmonen M, Pelander A. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Bioanal Chem 2012; 403: 1203-1220
  • 16 Christensen LP, Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 2006; 41: 683-693
  • 17 Xu YJ, Foubert K, Dhooghe L, Lemière F, Maregesi S, Coleman CM, Zou Y, Ferreira D, Apers S, Pieters L. Rapid isolation and identification of minor natural products by LC-MS, LC-SPE-NMR and ECD: isoflavanones, biflavanones and bisdihydrocoumarins from Ormocarpum kirkii . Phytochemistry 2012; 79: 121-128
  • 18 Ibáñez C, García-Cañas V, Valdés A, Simó C. Novel MS-based approaches and applications in food metabolomics. Trends Anal Chem 2013; 52: 100-111
  • 19 Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 2006; 7: 234
  • 20 De Paepe D, Servaes K, Noten B, Diels L, De Loose M, Van Droogenbroeck B, Voorspoels S. An improved mass spectrometric method for identification and quantification of phenolic compounds in apple fruits. Food Chem 2013; 136: 368-375
  • 21 Bijttebier S, Zhani K, DʼHondt E, Noten B, Hermans N, Apers S, Voorspoels S. Generic characterization of apolar metabolites in red chili peppers (Capsicum frutescens L.) by Orbitrap mass spectrometry. J Agric Food Chem 2014; 62: 4812-4831
  • 22 Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 2004; 39: 1-15
  • 23 Sun J, Liang F, Bin Y, Li P, Duan C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007; 12: 679-693
  • 24 Blazics B. Analysis of medicinal plant phenoloids by coupled tandem mass spectrometry [dissertation]. Budapest, Hungary: Semmelweis University; 2010
  • 25 Krasnov EA, Raldugin VA, Shilova IV, Avdeeva EY. Phenolic compounds from Filipendula ulmaria . Chem Nat Compd 2006; 42: 148-151
  • 26 Regueiro J, Sánchez-González C, Vallverdú-Queralt A, Simal-Gándara J, Lamuela-Raventós R, Izquierdo-Pulido M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry. Food Chem 2014; 152: 340-348
  • 27 Mingshu L, Kai Y, Qiang H, Dongying J. Biodegradation of gallotannins and ellagitannins. J Basic Microbiol 2006; 46: 68-84
  • 28 Niemetz R, Schilling G, Gross GG. Ellagitannin biosynthesis: oxidation of pentagalloylglucose to tellimagrandin II by an enzyme from Tellima grandiflora leaves. Chem Commun 2001; 1: 35-36
  • 29 Landete JM. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res Int 2011; 44: 1150-1160
  • 30 Li YJ, Wei HL, Qi LW, Chen J, Ren MT, Li P. Characterization and identification of saponins in Achyranthes bidentata by rapid-resolution liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 2010; 24: 2975-2985
  • 31 Bale NJ, Airs RL, Llewellyn CA. Type I and Type II chlorophyll-a transformation products associated with algal senescence. Org Geochem 2011; 42: 451-464
  • 32 Choy YY, Waterhouse AL. Proanthocyanidin metabolism, a mini review. Nutr Aging 2014; 2: 111-116
  • 33 Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutr 2008; 24: 733-743
  • 34 Rasmussen SE, Frederiksen H, Krogholm KS, Poulsen L. Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol Nutr Food Res 2005; 49: 159-174
  • 35 Rzeppa S, Bittner K, Döll S, Dänicke S, Humpf HU. Urinary excretion and metabolism of procyanidins in pigs. Mol Nutr Food Res 2012; 56: 653-665
  • 36 Lu MF, Xiao ZT, Zhang HY. Where do health benefits of flavonoids come from? Insights from flavonoid targets and their evolutionary history. Biochem Biophys Res Commun 2013; 434: 701-704
  • 37 Hollman PCH. Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol 2004; 42: 74-83
  • 38 Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR. Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 2015; 173: 501-513
  • 39 Farrell T, Poquet L, Dionisi F, Barron D, Williamson G. Characterization of hydroxycinnamic acid glucuronide and sulfate conjugates by HPLC-DAD-MS2: enhancing chromatographic quantification and application in Caco-2 cell metabolism. J Pharm Biomed Anal 2011; 55: 1245-1254
  • 40 Alvarado HL, Abrego G, Garduño-Ramirez ML, Clares B, Calpena AC, García ML. Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine 2015; 11: 521-530
  • 41 European Pharmacopoeia, 8.0. London: 04/2013. 1868. 1316-1317
  • 42 Wilkes S, Glasl H. Isolation, characterization, and systematic significance of 2-pyrone-4,6-dicarboxylic acid in Rosaceae. Phytochemistry 2001; 58: 441-449