Aktuelle Ernährungsmedizin 2016; 41(S 01): S29-S31
DOI: 10.1055/s-0042-102740
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Auf die Plätze, fertig – Mahlzeit!

Praxis der Sporternährung für verschiedene Belastungsbereiche: RaumfahrtReady, Steady – Enjoy Your Meal!The Practice of Sports Nutrition at Different Intensity Levels: Space Travel
V. Abeln
Institut für Bewegungs- und Neurowissenschaft, Deutsche Sporthochschule Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
11 April 2016 (online)

Zusammenfassung

Bei Weltraummissionen ist eine ausreichende und adäquate Ernährung die Grundvoraussetzung für die Gesundheit der Astronauten. Die Ernährungsplanung ist jedoch mit vielen Unsicherheiten behaftet und basiert größtenteils auf Studien, die auf der Erde durchgeführt und auf die Bedingungen im Weltraum übertragen werden. Sport wirkt sich positiv sowohl auf die körperliche Leistungsfähigkeit als auch auf das Befinden aus. Aus diesem Grund trainieren Astronauten in der Regel 2,5 Stunden pro Tag. Sport wird bei der Ernährungsplanung bisher jedoch unzureichend berücksichtigt. Das birgt die Gefahr einer Unterversorgung, die Abbauprozesse im All begünstigt. Wie der Ernährungsplan an dieses Sportprogramm angepasst werden muss, ist fraglich. Weder der sportbedingte Kalorienverbrauch noch der Nährstoffbedarf im Weltraum sind derzeit ausreichend geklärt. Grundsätzlich dienen wissenschaftliche Studien auf der Erde der Ernährungsplanung im Weltall und umgekehrt.

Abstract

During space missions, sufficient and adequate nutrition is a fundamental requirement for the health of the astronauts. Nutrition planning is, however, be set by many insecurities and uncertainties and is mostly based on studies that have been conducted on Earth and are transferred to conditions in space. Exercise has a positive effect on physical performance ability as well as mood. For this reason, astronauts usually exercise for two and a half hours per day. However, such exercise is insufficiently considered during nutrition planning. This entails the risk of underprovision, which encourages degenerative processes in space. Questions remain over how nutrition plans should be adapted to this exercise programme. Neither exercise-related calorie requirements nor nutrient requirements in space are currently sufficiently well known. Basically, scientific studies in Earth are used to plan nutrition in space – and vice versa.

 
  • Literatur

  • 1 Smith SM, Rice BL, Dlouhy H et al. Assessment of nutritional intake duing space flight and space flight analogs. Procedia Food Science 2013; 2: 27-34
  • 2 WHO. CINDI dietary guide. http://www.euro.who.int/__data/assets/pdf_file/0010/119926/E70041.pdf2000 [cited 2015 23. November]
  • 3 Lane HW, Gretebeck RJ, Schoeller DA et al. Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male US astronauts. Am J Clin Nutr 1997; 65: 4-12 PubMed PMID: 8988906
  • 4 Aubert AE, Beckers F, Verheyden B. Cardiovascular function and basics of physiology in microgravity. Acta Cardiol 2005; 60: 129-151
  • 5 Clement G, Bukley A. Artificial Gravity. Berlin: Springer; 2007
  • 6 Bailey JF, Hargens AR, Cheng KK et al. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice. J Biomech 2014; 47: 2983-2988 DOI: 10.1016/j.jbiomech.2014.07.005. PubMed PMID: 25085756
  • 7 Smith SM, Heer MA, Shackelford LC et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res 2012; 27: 1896-1906 DOI: 10.1002/jbmr.1647. PubMed PMID: 22549960
  • 8 Ploutz-Snyder LL, Downs M, Ryder J et al. Integrated resistance and aerobic exercise protects fitness during bed rest. Med Sci Sports Exerc 2014; 46: 358-368 DOI: 10.1249/MSS.0b013e3182a62f85. PubMed PMID: 24441215
  • 9 Fraser KS, Greaves DK, Shoemaker JK et al. Heart rate and daily physical activity with long-duration habitation of the International Space Station. Aviat Space Environ Med 2012; 83: 577-584 PubMed PMID: 22764612
  • 10 Gopalakrishnan R, Genc KO, Rice AJ et al. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med 2010; 81: 91-102 PubMed PMID: 20131648
  • 11 Schneider S, Brümmer V, Carnahan H et al. Exercise as a countermeasure to psycho-physiological deconditioning during long-term confinement. Behavioural Brain Research 2010; 211: 208-214 Epub 2010/03/30 DOI: 10.1016/j.bbr.2010.03.034. PubMed PMID: 20346985
  • 12 Abeln V, MacDonald-Nethercott E, Piacentini MF et al. Exercise in isolation – a countermeasure for electrocortical, mental and cognitive impairments. Plos One 2015; 10: e0126356 DOI: 10.1371/journal.pone.0126356. PubMed PMID: 25961821; PubMed Central PMCID: PMCPMC4427298
  • 13 Kasyan IL, Makarov GF. External respiration, gas exchange and energy expenditure of man in weightlessness. Kosm Biol Aviakosm Med 1984; 18: 4-9
  • 14 Lane HW, Gretebeck RJ, Smith SM. Nutrition, endocrinology, and body composition during space flight. Nutr Res 1998; 18: 1923-1934 PubMed PMID: 11541547
  • 15 NASA. NASA Space Flight Human-System Standard. Washington: National Aeronautics and Space Administration; 2015
  • 16 Zwart SR, Pierson D, Mehta S et al. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts. J Bone Miner Res 2010; 25: 1049-1057 PubMed PMID: 19874203 DOI: 10.1359/jbmr.091041.
  • 17 Stein TP. The relationship between dietary intake, exercise, energy balance and the space craft environment. Pflugers Arch 2000; 441 (2–3 Suppl): R21-31 PubMed PMID: 11200976
  • 18 Rakova N, Juttner K, Dahlmann A et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab 2013; 17: 125-131 PubMed PMID: 23312287 DOI: 10.1016/j.cmet.2012.11.013.