RSS-Feed abonnieren
DOI: 10.1055/s-0042-103521
Einfluss toxischer Metalle auf die Krebsentstehung
Publikationsverlauf
Publikationsdatum:
26. April 2016 (online)
![](https://www.thieme-connect.de/media/dzo/201601/lookinside/thumbnails/10-1055-s-0042-103521-1.jpg)
Zusammenfassung
Metalle und Schwermetalle haben Einfluss auf alle Phasen der Entstehung, des Wachstums, der Metastasierung und der Rezidivierung von Tumorerkrankungen. Wesentliche Faktoren sind die Bildung reaktiver Sauerstoffspezies und die Schädigung von Biomakromolekülen, wie DNA, Proteinen und Lipiden. Dies hat Auswirkungen auf die Funktion von Proteinkinasen und die Lipidperoxidation sowie nachgeschaltete Stoffwechselwege, die für die Onkogenese von Bedeutung sind. Durch die Veränderung der DNA-Methylierung und die Modifikation von Histonen beeinflussen fakultativ karzinogene Metalle auch die Epigenetik. Die Fähigkeit der toxischen Metalle, im menschlichen Körper über Jahrzehnte hinweg zu akkumulieren, und die Wechselwirkungen bereits sehr geringer Konzentrationen toxischer Metalle erschweren die Beurteilung des karzinogenen Potenzials der einzelnen Metalle.
Der Einsatz von Chelatbildnern ermöglicht die Diagnose und Behandlung von chronischen, niedrig dosierten Metallbelastungen, die in den Organen und im Bindegewebe des Körpers angereichert werden. Dies stellt einen kausalen Therapieansatz in der Primär- und Sekundärprävention von Tumorerkrankungen dar.
Summary
Metals and heavy metals have influence on all stages of formation, growth, metastasis and recurrence of tumor diseases. Key factors are the formation of reactive oxygen species and the damage of biomolecules, such as DNA, proteins and lipids. This affects the function of protein kinases and the lipid peroxidation as well as downstream metabolic pathways that are relevant for oncogenesis. By changing the DNA methylation and histone modifications carcinogenic metals can affect epigenetics. The ability of toxic metals to accumulate in the human body for decades, and the interactions of already very low concentrations of toxic metals, make it difficult to assess the carcinogenic potential of the single metals.
The use of chelating agents enables the diagnosis and treatment of chronic low-dose metal loads that are concentrated in the organs and in the connective tissue of the body. This represents a causal therapeutic approach in the primary and secondary prevention of tumor diseases.
-
Literatur
- 1 ACS – American Cancer Society. Global Cancer Facts & Figures. 2nd Ed. Atlanta, USA; 2011
- 2 Aguado A, Galán M, Zhenyukh O et al. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicol Appl Pharmacol 2013; 268(2): 188-200
- 3 Al-Saleh I, Abduljabbar M, Al-Rouqi R et al. Mercury (Hg) exposure in breast-fed infants and their mothers and the evidence of oxidative stress. Biol Trace Elem Res 2013; 153(1–3): 145-54
- 4 Anane R, Creppy EE. Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: prevention by superoxide dismutase+catalase and vitamins E and C. Hum Exp Toxicol 2001; 20(9): 477-81
- 5 Aposhian HV, Maiorino RM, Gonzalez-Ramirez D et al. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 1995; 97(1–3): 23-38
- 6 Arroyo-Serralta GA, Kú-González A, Hernández-Sotomayor SM, Zúñiga Aguilar JJ. Exposure to toxic concentrations of aluminum activates a MAPK-like protein in cell suspension cultures of Coffea arabica. Plant Physiol Biochem 2005; 43(1): 27-35
- 7 Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev 2014; 360438 Published online 2014 May 8
- 8 Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr 2009; 21: 243-251
- 9 Bakulski KM, Lee H, Feinberg JI, Wells EM et al. Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int J Epidemiol 2015; 44(4): 1249-62
- 10 Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012; 137289 Epub 2012 Oct 17
- 11 Bellanger M, Pichery C, Aerts D et al. DEMO/COPHES. Economic benefits of methylmercury exposure control in Europe: monetary value of neurotoxicity prevention. Environ Health 2013; 12: 3
- 12 Benbrahim-Tallaa L, Waterland RA, Dill AL et al. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 2007; 115: 1454-9
- 13 Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia 2013; 18(1): 63-73
- 14 Caffo M, Caruso G, Fata GL, Barresi V, Visalli M, Venza M, Venza I. Heavy metals and epigenetic alterations in brain tumors. Curr Genomics 2014; 15(6): 457-63
- 15 Cai F, Dupertuis YM, Pichard C. Role of polyunsaturated fatty acids and lipid peroxidation on colorectal cancer risk and treatments. Curr Opin Clin Nutr Metab Care 2012; 15(2): 99-106
- 16 Cardenas A, Koestler DC, Houseman EA et al. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 2015; 10(6): 508-15
- 17 Catala A. Lipid peroxidation of membrane phospholipids generates hydroxyalkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 2009; 157: 1-11
- 18 Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, Lin-Shiau SY, Liu SH. The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic beta-cell dysfunction in vitro and in vivo. Diabetes 2006; 55(6): 1614-24
- 19 Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 2012; 32(9): 643-53
- 20 Chi P, Allis CD, Wang GG. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10(7): 457-69
- 21 Cranton E. A Textbook on EDTA Chelation Therapy. Second Edition Newburyport, Massachusetts, USA: Hampton Roads Publishing; 2 Sub edition (2001–04–01)
- 22 Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorgan Biochem 2005; 99: 1912-19
- 23 Deutscher Bundestag (2013). Gesundheitsgefährdung durch die Mehrfachbelastung mit Schwermetallen sowie weiteren potentiell toxischen Metallen. 17. Wahlperiode – Drucksache 17/13688
- 24 Deutsche Forschungsgemeinschaft. DFG legt MAK- und BAT-Werte-Liste 2006 vor. Pressemitteilung Nr. 34 | 5. Juli 2006 – http://www.dfg.de/service/presse/pressemitteilungen/2006/pressemitteilung_nr_34/index.html – Letzter Zugriff: 09.01.2016
- 25 Deutsche Forschungsgemeinschaft. Krebserzeugende Arbeitsstoffe, in: MAK- und BAT-Werte-Liste 2015. Weinheim: Wiley-VCH; 2015
- 26 Deutsche Forschungsgemeinschaft. Bedeutung, Benutzung und Ableitung von MAK-Werten, in: MAK- und BAT-Werte-Liste 2013: Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte. Weinheim: Wiley-VCH; 2013
- 27 Dix TA, Aikens J. Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 1993; 6(1): 2-18
- 28 Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95
- 29 Du H, Zhu X, Fan C, Xu S, Wang Y, Zhou Y. Oxidative damage and OGG1 expression induced by a combined effect of titanium dioxide nanoparticles and lead acetate in human hepatocytes. Environ Toxicol 2012; 27(10): 590-7
- 30 Flora SJ, Mittal M, Metha A. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 2008; 128(4): 501-23
- 31 Flora SJ, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health 2010; 7(7): 2745-88
- 32 Freeley M, Kelleher D, Long A. Regulation of protein kinase C function by phosphorylation on conserved and non-conserved sites. Cell Signal 2011; 23: 753-62
- 33 Furst A. Chelating and Cancer. A Speculative Review. In: Seven MJ, Johnson LA, ed. Metal-Binding in Medicine. Philadelphia, Montreal: J. B. Lippincott; 1960: 336-44
- 34 Garçon G, Leleu B, Zerimech F et al. Biologic markers of oxidative stress and nephrotoxicity as studied in biomonitoring of adverse effects of occupational exposure to lead and cadmium. J Occup Environ Med 2004; 46(11): 1180-6
- 35 Geering B, Simon HU. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ 2011; 18: 1457-69
- 36 Hartwig A, Asmuss M, Ehleben I et al. Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 2002; 110(Suppl 5): 797-9
- 37 Hartwig A, Asmuss M, Blessing H et al. Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability. Food Chem Toxicol 2002; 40(8): 1179-84
- 38 Hoffmann S, Spitkovsky D, Radicella JP et al. Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of mammalian cells. Free Radic Biol Med 2004; 36: 765-73
- 39 http://www.proteinkinase.info/ – Letzter Zugriff: 09.01.2016
- 40 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, Metals, Fibres, and Dusts. IARC Monogr Eval Carcinog Risks Hum 2012; 100(Pt C): 11-465
- 41 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Inorganic and Organic Lead Compounds. IARC Monogr Eval Carcinog Risks Hum 2006; 87: 1-471
- 42 Institóris L, Kovács D, Kecskeméti-Kovács I et al. Immunotoxicological investigation of subacute combined exposure with low doses of Pb, Hg and Cd in rats. Acta Biol Hung 2006; 57(4): 433-9
- 43 International Agency for Research on Cancer. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. IARC Monogr Eval Carcinog Risks Hum 1993; 58: 1-415
- 44 Janicki K, Dobrowolski J, Krasnicki K. Correlation between contamination of the rural environment with mercury and occurrence of leukemia in men and cattle. Chemosphere 1987; 16 (1): 253-7
- 45 Jennrich P. „Das hat mir geholfen!“ Schwermetallentgiftung als Basistherapie bei chronischen Erkrankungen. Bielefeld: Aurum; 2013
- 46 Jennrich P. Die medizinische Bedeutung chronischer Metallbelastungen – ein Überblick. umwelt‧medizin‧gesellschaft 2009; 22(3): 257-260
- 47 Jennrich P. Schwermetalle – Ursache für Zivilisationskrankheiten.. Hochheim: CO’MED Verlag; 2007
- 48 Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011; 283(2–3): 65-87
- 49 Karihtala P, Kauppila S, Puistola U, Jukkola-Vuorinen A. Divergent behaviour of oxidative stress markers 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (HNE) in breast carcinogenesis. Histopathology 2011; 58(6): 854-62
- 50 Kehrer JP. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 1993; 23: 21-48
- 51 Kinjo Y, Akiba S, Yamaguchi N, Mizuno S, Watanabe S, Wakamiya J, and Futatsuka M, Kato H. Cancer mortality in Minamata disease patients exposed to methylmercury through fish diet. J Epidemiol 1996; 6(3): 134-8
- 52 Kudo Y, Iizuka S et al. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem 2012; 287(46): 38716-28
- 53 Kumar V, Bal A, Gill KD. Aluminium-induced oxidative DNA damage recognition and cell-cycle disruption in different regions of rat brain. Toxicology 2009; 264(3): 137-44
- 54 Kwon JT, Seo GB, Lee Jo M, Kim HM, Shim I, Lee BW, Yoon BI, Kim P, Choi K. Aluminum Nanoparticles Induce ERK and p38MAPK Activation in Rat Brain. Toxicol Res 2013; 29(3): 181-5
- 55 Lamas G. Trial to Assess Chelation Therapy (TACT). Sponsor: Mt. Sinai Medical Center, Miami. Collaborators: National Heart, Lung, and Blood Institute (NHLBI), National Center for Complementary and Alternative Medicine (NCCAM). Information provided by (Responsible Party): Gervasio Lamas, MD, Mt. Sinai Medical Center, Miami. ClinicalTrials.gov Identifier: NCT00044213. Last verified: August 2013 [http://clinicaltrials.gov/ct2/show/results/NCT00044213, Zugriff: 01.02.2016]
- 56 Lee JC, Son YO, Pratheeshkumar P, Shi X. Oxidative stress and metal carcinogenesis. Free Radic Biol Med 2012; 53(4): 742-57
- 57 Leung EY, Crozier JE, Talwar D, O'Reilly DS, McKee RF, Horgan PG, McMillan DC. Vitamin antioxidants, lipid peroxidation, tumour stage, the systemic inflammatory response and survival in patients with colorectal cancer. Int J Cancer 2008; 123(10): 2460-4
- 58 Li ZY, Yang Y, Ming M, Liu B. Mitochondrial, R. O. S. generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 2011; 414: 5-8
- 59 Liu JT, Chen BY, Zhang JQ, Kuang F, Chen LW. Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4-MyD88-NFκB signaling cascades. Toxicol Lett 2015; 239(2): 97-107
- 60 Maccani JZ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, Marsit CJ. Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes. Environ Health Perspect 2015; 123(7): 723-9
- 61 Madden EF. The role of combined metal interactions in metal carcinogenesis: a review. Rev Environ Health 2003; 18(2): 91-109
- 62 Marnett LJ. Lipid peroxidation – DNA damage by malondialdehyde. Mutat Res 1999; 424(1–2): 83-95
- 63 Martin MB, Reiter R, Pham T et al. Estrogenlike activity of metals in MCF-7 breast cancer cells. Endocrinology 2003; 144(6): 2425-36
- 64 McNamara CR, Degterev A. Small-molecule inhibitors of the PI3K signaling network. Future Med Chem 2011; 3(5): 549-65
- 65 Merzenich H, Hartwig A, Ahrens W, Beyersmann D, Schlepegrell R, Scholze M, Timm J, Jöckel KH. Biomonitoring on carcinogenic metals and oxidative DNA damage in a cross-sectional study. Cancer Epidemiol Biomarkers Prev 2001; 10(5): 515-22
- 66 Molina-Holgado F, Hider RC, Gaeta A et al. Metals ions and neurodegeneration. Biometals 2007; 20(3–4): 639-54
- 67 Mori N, Yasutake A, Hirayama K. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 2007; 81: 769-76
- 68 Ni W, Huang Y, Wang X, Zhang J, Wu K. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town. Sci Total Environ 2014; 472: 354-62
- 69 Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem 2003; 278(33): 31426-33
- 70 Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase – mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 2008; 275(13): 3278-89
- 71 Pivetta E, Scapolan M et al. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res 2011; 13(5): R105
- 72 Pizzino G, Bitto A, Interdonato M, Galfo F et al. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biol 2014; 2: 686-93
- 73 Poulsen HE, Prieme S, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prevent 1998; 7: 9-16
- 74 Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 2008; 15: 164-187
- 75 Roy A, Queirolo E, Peregalli F, Mañay N, Martínez G, Kordas K. Association of blood lead levels with urinary F₂-8α isoprostane and 8-hydroxy-2-deoxy-guanosine concentrations in first-grade Uruguayan children. Environ Res 2015; 140: 127-35
- 76 Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P et al. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics 2015; 7(1): 55
- 77 Salonen JT, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R. Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 1995; 91: 645-55
- 78 Satoh E, Yasuda I, Yamada T et al. Involvement of NO generation in aluminium-induced cell death. Biol Pharm Bull 2007; 30(8): 1390-4
- 79 Schartl M, Gessler M, von Eckardstein A. Biochemie und Molekularbiologie des Menschen. München: Elsevier; 2009
- 80 Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta 2006; 1763: 1755-1766
- 81 Stewart BW, Wild CP. World Cancer Report 2014. International Agency for Research on Cancer (IARC), Nonserial Publication.
- 82 Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765): 41-5
- 83 Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 2003; 286(2): 355-65
- 84 Toyokuni S, Sagripanti JL. Iron chelators modulate the production of DNA strand breaks and 8-hydroxy-2'-deoxyguanosine. Free Radic Res 1999; 31(2): 123-8
- 85 Toyokuni S, Sagripanti JL. Association between 8-hydroxy-2'-deoxyguanosine formation and DNA strand breaks mediated by copper and iron. Free Radic Biol Med 1996; 20(6): 859-64
- 86 Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009; 69(22): 8784-9
- 87 Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003; 42(4): 318-43
- 88 Umweltbundesamt, Stellungnahme der Kommission „Human-Biomonitoring“. 2. Addendum zur „Stoffmonographie Blei – Referenz- und „Human-Biomonitoring“-Werte. Bundesgesundheitsbl 2009; 52: 983-6
- 89 Umweltbundesamt. Einsatz von Chelatbildnern in der Umweltmedizin?. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 1999; 42(19): 823-4
- 90 Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009; 27(2): 120-39
- 91 Vincent-Chong VK, Salahsourifar I et al. Overexpression of MMP13 is associated with clinical outcomes and poor prognosis in oral squamous cell carcinoma. The Scientific World Journal 2014; 897523 Published online 2014 October 23
- 92 Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2(7): 489-501
- 93 Wang B, Xing W, Zhao Y, Deng X. Effects of chronic aluminum exposure on memory through multiple signal transduction pathways. Environ Toxicol Pharmacol 2010; 29(3): 308-13
- 94 Yang M. A current global view of environmental and occupational cancers. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2011; 29(3): 223-49
- 95 Yang L, Ho NY et al. Methyl mercury suppresses the formation of the tail primordium in developing zebrafish embryos. Toxicol Sci. 2010; 115(2): 379-90
- 96 Yang JL, Wang LC, Chang CY, Liu TY. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 1999; 33(3): 194-201
- 97 Yang X, Yuan Y, Lu X et al. The Relationship Between Cognitive Impairment and Global DNA Methylation Decrease Among Aluminum Potroom Workers. J Occup Environ Med 2015; 57(7): 713-7
- 98 Ye J, Zhang X, Young HA, Mao Y, Shi X. Chromium(VI)-induced nuclear factor-kappa B activation in intact cells via free radical reactions. Carcinogenesis 1995; 16(10): 2401-5
- 99 Zhang LW, Gao YH et al. Expression of matrix metalloproteinases-13 in the damage process of rat articular chondrocyte induced by fluoride and aluminium. Chinese Journal of Endemiology 2009; 28(2): 138-41
- 100 Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol 2015; 4: 193-9