RSS-Feed abonnieren
DOI: 10.1055/s-0042-107181
Mechanische Thoraxkompressionsgeräte
Aktueller Stand und mögliche EinsatzgebietePublikationsverlauf
Publikationsdatum:
16. Juni 2016 (online)
-
Es existieren inzwischen sowohl multizentrische Studien zum prähospitalen Routineeinsatz von mechanischen Thoraxkompressionsgeräten als auch verschiedene Fallberichte zu besonderen Einsatzsituationen.
-
Der routinemäßige Einsatz wird in den ERC-Leitlinien 2015 nicht empfohlen, da kein Überlebensvorteil nachgewiesen werden konnte. Dennoch stellen sie für den trainierten Anwender in bestimmten Situationen eine mögliche Alternative dar.
-
Während des Transports unter Reanimation arbeiten die Geräte zuverlässig und erhöhen die Sicherheit für die Helfer.
-
Bei lange andauernden Reanimationen, z. B. bei einer Hypothermie, vermeiden die Geräte einen Qualitätsverlust der Thoraxkompressionen durch Ermüdung der Helfer.
-
Im Herzkatheterlabor lässt sich im Falle einer notwendigen Reanimation die Strahlenbelastung des Personals reduzieren, da auch während des Einsatzes mechanischer Kompressionsgeräte die Fortführung der Koronarintervention möglich ist.
-
Literatur
- 1 Perkins GD, Handley AJ, Koster RW et al. Basismaßnahmen zur Wiederbelebung Erwachsener und Verwendung automatisierter externer Defibrillatoren. Kapitel 2 der Leitlinien zur Reanimation 2015 des European Resuscitation Council. Notfall Rettungsmed 2015; 18: 748-769
- 2 Yakaitis RW, Ewy GA, Otto CW, Gonschorek O et al. Influence of time and therapy on ventricular defibrillation in dogs. Crit Care Med 1980; 8: 157-163
- 3 Palmer BS, Hadziahmetovic M, Veci T et al. Global ischemic duration and reperfusion function in the isolated perfused rat heart. Resuscitation 2004; 62: 97-106
- 4 Wik L, Kramer-Johansen J, Myklebust H et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005; 293: 299-304
- 5 Olasveengen TM, Wik L, Steen PA. Quality of cardiopulmonary resuscitation before and during transport in out-of-hospital cardiac arrest. Resuscitation 2008; 76: 185-190
- 6 Abella BS, Sandbo N, Vassilatos P et al. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 2005; 111: 428-434
- 7 Abella BS, Alvarado JP, Myklebust H et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005; 293: 305-310
- 8 Delguercio LR, Feins NR, Cohn JD et al. Comparison of blood flow during external and internal cardiac massage in man. Circulation 1965; 31 (Suppl. 01) S171-S180
- 9 Weil MH, Bisera J, Trevino RP et al. Cardiac output and end-tidal carbon dioxide. Crit Care Med 1985; 13: 907-909
- 10 Rubertsson S, Grenvik A, Zemgulis V et al. Systemic perfusion pressure and blood flow before and after administration of epinephrine during experimental cardiopulmonary resuscitation. Crit Care Med 1995; 23: 1984-1996
- 11 Pernat A, Weil MH, Sun S et al. Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation. Crit Care Med 2003; 31: 1819-1823
- 12 Fischer M, Dahmen A, Standop J et al. Effects of hypertonic saline on myocardialblood flow in a porcine model of prolonged cardiac arrest. Resuscitation 2002; 54: 269-280
- 13 Steen S, Liao Q, Pierre L et al. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 2002; 55: 285-299
- 14 Timerman S, Cardoso LF, Ramires JA et al. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Resuscitation 2004; 61: 273-280
- 15 Jolife. Bedienungsanleitung LUCAS™ 2. Online: www.lucas-cpr.com/doc_en/100666-02_Rev_A_LUCAS2_IFU_DE_Web2.pdf (letzter Zugriff: 17.5.2016)
- 16 Zoll. Bedienerhandbuch AutoPulse. Im Internet: https://www.zoll.com/uploadedFiles/Public_Site/Products/AutoPulse/Bedienerhandbuch.pdf (letzter Zugriff: 25.05.2016 )
- 17 Deakin CD, Nolan JP, Soar J et al. European Resuscitation Council Guidelines for Resuscitation 2010. Section 4. Adult advanced life support. Resuscitation 2010; 81: 1305-1352
- 18 Rubertsson S, Lindgren E, Smekal D et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in outof-hospital cardiac arrest: the LINC randomized trial. JAMA 2014; 311: 53-63
- 19 Wik L, Olsen JA, Persse D et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation 2014; 85: 741-748
- 20 Rubertsson S, Karlsten R. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation 2005; 65: 357-363
- 21 Axelsson C, Karlsson T, Axelsson AB et al. Mechanical active compression-decompression cardiopulmonary resuscitation (ACD-CPR) vs manual CPR according to pressure of end tidal carbon dioxide (P(ET)CO2) during CPR in out-of-hospital cardiac arrest (OHCA). Resuscitation 2009; 80: 1099-1103
- 22 Larsen AI, Hjornevik AS, Ellingsen CL et al. Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention: A report on the use of the LUCAS device. Resuscitation 2007; 75: 454-459
- 23 Axelsson C, Nestin J, Svensson L et al. Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest - a pilot study. Resuscitation 2006; 71: 47-55
- 24 Smekal D, Johansson J, Huzevka T et al. A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation 2011; 82: 702-706
- 25 Perkins GD, Lall R, Quinn T et al. Mechanical versus manual chest compression for out-of hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet 2015; 385: 947-955
- 26 Halperin HR, Paradis N, Ornato JP et al. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol 2004; 44: 2214-2220
- 27 Ikeno F, Kaneda H, Hongo Y et al. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest. Resuscitation 2006; 68: 109-118
- 28 Duchateau FX, Gueye P, Curac S et al. Effect of the AutoPulse automated band chest compression device on hemodynamics in out-of-hospital cardiac arrest resuscitation. Intensive Care Med 2010; 36: 1256-1260
- 29 Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care 2005; 9: 61-67
- 30 Ong ME, Ornato JP, Edwards DP et al. Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. J Am Med Assoc 2006; 295: 2629-2637
- 31 Hallstrom A, Rea TD, Sayre MR et al. Manual chest compression vs. use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. J Am Med Assoc 2006; 295: 2620-2628
- 32 Schmitt C. Kardiopulmonale Reanimation mit dem ANIMAX-Hilfssystem [Dissertation]. Untersuchung am Reanimationsmodell. Universität Würzburg; 2010
- 33 Gässler H, Ventzke MM, Lampl L et al. Transport with ongoing resuscitation. Emerg Med J 2013; 30: 589-592
- 34 Ventzke MM, Gässler H, Lampl L et al. Cardio pump reloaded – in-hospital resuscitation during transport. Intern Emerg Med 2013; 8: 621-626
- 35 Gässler H, Kümmerle S, Ventzke MM et al. Mechanical chest compression: an alternative in helicopter emergency medical services?. Intern Emerg Med 2015; 10: 715-720
- 36 Fischer M, Brell M, Ihli M et al. Mechanische Reanimationshilfen. Anaesthesist 2014; 63: 186-197
- 37 Soar J, Nolan JP, Böttiger BW et al. Erweiterte Reanimationsmaßnahmen für Erwachsene („adult advanced life support“). Kapitel 3 der Leitlinien zur Reanimation 2015 des European Resuscitation Council. Notfall Rettungsmed 2015; 18: 770-832
- 38 Soar J, Callaway CW, Aibiki M et al. Part 4: Advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2015; 95: 71-90
- 39 Stapleton ER. Comparing CPR during ambulance transport: manual vs. mechanical methods. JEMS 1991; 16: 63-72
- 40 Wik L, Kramer-Johansen L, Myklebust H et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005; 293: 299-304
- 41 Olasveengen TM, Wik L, Steen PA. Quality of cardiopulmonary resuscitation before and during transport in out-of-hospital cardiac arrest. Resuscitation 2008; 76: 185-190
- 42 Stone CK, Thoman SH. Can correct closed-chest compressions be performed during prehospital transport?. Prehosp Disaster Med 2012; 10: 121-123
- 43 Fox J, Fiechter R, Gerstl P et al. Mechanical versus manual chest compression CPR under ground ambulance transport conditions. Acute Cardiac Care 2013; 15: 1-6
- 44 Putzer G, Braun P, Zimmermann A et al. LUCAS compared to manual cardiopulmonary resuscitation is more effective during helicopter rescue – a prospective, randomized, cross-over manikin study. Am J Emerg Med 2013; 31: 384-389
- 45 Holmstrom P, Boyd J, Sorsa M et al. A case of hypothermic cardiac arrest treated with an external chest compression device (LUCAS) during transport to re-warming. Resuscitation 2005; 67: 139-141
- 46 Krep H, Mamier M, Breil M et al. Out-of-hospital cardiopulmonary resuscitation with the AutoPulse system: a prospective observational study with a new load-distributing band chest compression device. Resuscitation 2007; 73: 86-95
- 47 Kyrval HS, Ahmad K. Automatic mechanical chest compression during helicopter transportation. Ugeskr Laeger 2010; 172: 3190-3191
- 48 Risom M, Jørgensen H, Rasmussen LS et al. Resuscitation, prolonged cardiac arrest and an automated chest compression device. J Emerg Med 2010; 38: 481-483
- 49 Zimmermann S, Rohde D, Marwan M et al. Complete recovery after out-of-hospital cardiac arrest with prolonged (59 min) mechanical cardiopulmonary resuscitation, mild therapeutic hypothermia and complex percutaneous coronary intervention for ST-elevation myocardial infarction. Heart Lung 2014; 43: 62-65
- 50 Forti A, Zilio G, Zanatta P et al. Full recovery after prolonged cardiac arrest and resuscitation with mechanical chest compression device during helicopter transportation and percutaneous coronary intervention. J Emerg Med 2014; 47: 632-634
- 51 Pietsch U, Lischke V, Pietsch C. Benefit of mechanical chest compression devices in mountain HEMS: lessons learned from 1 year of experience and evaluation. Air Med J 2014; 33: 299-231
- 52 Omori K, Sato S, Sumi Y et al. The analysis of efficacy for AutoPulse® system in flying helicopter. Resuscitation 2013; 84: 1045-1050
- 53 Wik L, Kiil S. Use of an automatic mechanical chest compression device (LUCAS) as a bridge to establishing cardiopulmonary bypass for a patient with hypothermic cardiac arrest. Resuscitation 2015; 66: 391-394
- 54 Friberg H, Rundgren M. Submersion, accidental hypothermia and cardiac arrest, mechanical chest compressions as a bridge to final treatment: a case report. Scand J Trauma Resusc Emerg Med 2009; 17: 7
- 55 Manke F, Keil T. Kasuistik: Reanimation eines hypothermen Patienten – „Nichts ist so, wie es scheint!“. Anästhesiol Intensivmed Notfallmed Schmerzther 2016; 51: 18-24
- 56 Bonnemeier H, Simonis G, Olivecrona G et al. Continuous mechanical chest compression during in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity. Resuscitation 2011; 82: 155-159
- 57 Wyss CA, Fox J, Franzeck F et al. Mechanical versus manual chest compression during CPR in a cardiac catherisation setting. Cardiovascular Medicine 2010; 13: 92-96
- 58 van Wely M, Gehlmann H, Cramer E et al. AutoPulse facilitated resuscitation in out-of-hospital cardiac arrest as a bridge to coronary intervention. Abstract. Resuscitation 2011; 82: S3
- 59 Larsen AI, Hjornevik AS, Ellingsen CL et al. Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention: A report on the use of the LUCAS device. Resuscitation 2007; 75: 454-459
- 60 Wagner H, Terkelsen CJ, Friberg H et al. Cardiac arrest in the catheterisation laboratory: a 5-year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation 2010; 81: 383-387
- 61 Yost D, Phillips RH, Gonzales L et al. Assessment of CPR interruptions from transthoracic impedance during use of the LUCAS™ mechanical chest compression system. Resuscitation 2012; 83: 961-965
- 62 Ong ME, Quah JL, Annathurai A et al. Improving the quality of cardiopulmonary resuscitation by training dedicated cardiac arrest teams incorporating a mechanical load-distributing device at the emergency department. Resuscitation 2013; 84: 508-514
- 63 Lerner EB, Persse D, Souders CM et al. Design of the Circulation Improving Resuscitation Care (CIRC) Trial: a new state of the art design for out-of-hospital cardiac arrest research. Resuscitation 2011; 82: 294-299
- 64 Kramer-Johansen J, Myklebust H, Wik L et al. Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation 2006; 71: 283-292
- 65 Vaillancourt C, Everson-Stewart S, Christenson J et al. The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation. Resuscitation 2011; 82: 1501-1507
- 66 Stiell IG, Nichol G, Leroux BG et al. Early versus later rhythm analysis in patients with out-of-hospital cardiac arrest. N Engl J Med 2011; 365: 787-797
- 67 Lederer W, Mair D, Rabl W et al. Frequency of rib and sternum fractures associated with out-of-hospital cardiopulmonary resuscitation is underestimated by conventional chest X-ray. Resuscitation 2004; 60: 157-162
- 68 Smekal D, Johansson J, Huzevka T et al. No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device – a pilot study. Resuscitation 2009; 80: 1104-1107
- 69 Pinto DC, Haden-Pinneri K, Love JC. Manual and automated cardiopulmonary resuscitation (CPR): a comparison of associated injury patterns. J Forensic Sci 2013; 58: 904-909
- 70 Truhlar A, Hejna P, Zabka L et al. Injuries caused by the AutoPulse and the LUCAS II resuscitation systems compared to manual chest compressions. Abstract. Resuscitation 2010; 81: S62
- 71 Xanthos T, Pantazopoulos I, Papadimitriou L. Human studies may overestimate injuries related to mechanical chest compression cardiopulmonary resuscitation. Resuscitation 2010; 81: 775