Planta Med 2017; 83(01/02): 63-69
DOI: 10.1055/s-0042-108203
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

The Hydroalcoholic Extract of Leaves of Mandevilla moricandiana Induces NO-Mediated Vascular Relaxation

Letícia Lima Dias Moreira Ferreira
1   Laboratório Integrado de Pesquisa, Universidade Federal do Rio de Janeiro – Campus Macaé Professor Aloísio Teixeira, Rio de Janeiro, Brazil
,
Márcio Vinícius Gomes
2   Laboratório de Produtos Bioativos, IMCT, Universidade Federal do Rio de Janeiro – Campus Macaé Professor Aloísio Teixeira, Rio de Janeiro, Brazil
,
Bruno Meirelles Paes
1   Laboratório Integrado de Pesquisa, Universidade Federal do Rio de Janeiro – Campus Macaé Professor Aloísio Teixeira, Rio de Janeiro, Brazil
,
Paula Lima do Carmo
1   Laboratório Integrado de Pesquisa, Universidade Federal do Rio de Janeiro – Campus Macaé Professor Aloísio Teixeira, Rio de Janeiro, Brazil
,
Tatiana Ungaretti Paleo Konno
3   Núcleo de Pesquisa em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Francisco de Assis Esteves
3   Núcleo de Pesquisa em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Norberto Peporine Lopes
4   Departamento de Física e Química da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
,
José Carlos Tomaz
4   Departamento de Física e Química da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
,
Ivana Correa Ramos Leal
5   Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Denise Oliveira Guimarães
2   Laboratório de Produtos Bioativos, IMCT, Universidade Federal do Rio de Janeiro – Campus Macaé Professor Aloísio Teixeira, Rio de Janeiro, Brazil
,
Michelle Frazão Muzitano
2   Laboratório de Produtos Bioativos, IMCT, Universidade Federal do Rio de Janeiro – Campus Macaé Professor Aloísio Teixeira, Rio de Janeiro, Brazil
,
Juliana Montani Raimundo
1   Laboratório Integrado de Pesquisa, Universidade Federal do Rio de Janeiro – Campus Macaé Professor Aloísio Teixeira, Rio de Janeiro, Brazil
› Author Affiliations
Further Information

Publication History

received 17 December 2015
revised 20 April 2016

accepted 27 April 2016

Publication Date:
10 June 2016 (online)

Abstract

Natural products extracted from plants represent a valuable source of new bioactive substances. Many studies describe the potential of plant products for the treatment of cardiovascular diseases. Species of the Mandevilla genus have been studied for their biological activities, mainly as antioxidant, anti-inflammatory, and vasorelaxant. However, the phytochemical and pharmacological profiles of Mandevilla moricandiana have not been investigated yet. The aim of this study was to evaluate the vasodilator effect of the hydroalcoholic extract of the leaves of M. moricandiana, as well as its chemical profile. Chemical analysis and quantification of major compounds were performed by HPLC analysis. Total flavonoid content was quantified based on rutin equivalents, and major compounds were identified based on HPLC-DAD-MS analysis. M. moricandiana leaf extract-induced vasodilation was investigated in rat aortic rings precontracted with phenylephrine. The total flavonoids were quantified as 3.25 ± 0.11 % w/w of the hydroalcoholic leaf extract, and HPLC-DAD-MS allowed for the identification of luteolin and quercetin glycosides. The maximal relaxant effect of the hydroalcoholic leaf extract was 86.07 ± 1.68 % at a concentration of 30 µg/mL (p < 0.05; n = 6). The concentration of hydroalcoholic extract of the leaves of M. moricandiana necessary to reduce phenylephrine-induced contractions of the endothelium-intact aorta by 50 % was 0.82 ± 0.10 µg/mL. M. moricandiana leaf extract-induced vasodilation was abolished in aortas pretreated with NG-nitro-L-arginine methyl ester and 1H-[1,2,4]oxadiazolo-[4,3-α]quinoxalin-1-one. In addition, diphenhydramine partially inhibited the effect of the hydroalcoholic extract of the leaves of M. moricandiana. Thus, M. moricandiana-induced relaxation depends on the endothelium and on the activation of the nitric oxide/cyclic GMP pathway, with the involvement of endothelial histamine H1 receptors. Luteolin and quercetin glycosides seem to contribute to the extract activity.

Supporting Information

 
  • References

  • 1 Calixto JB, Yunes RA. Effect of a crude extract of Mandevilla velutina on contractions induced by bradykinin and [des-Arg9]-bradykinin in isolated vessels of the rabbit. Br J Pharmacol 1986; 88: 937-941
  • 2 Calixto JB, Yunes RA, Cruz AB, Medeiros YS. Effect of compounds from Mandevilla velutina on bradykinin-mediated contractile and relaxant responses of the isolated guinea pig trachea. Agents Actions 1992; 36: 222-229
  • 3 Mattos WM, Campos MM, Fernandes ES, Ferreira J, Richetti GP, Niero R, Yunes RA, Calixto JB. Anti-edematogenic effects of velutinol A isolated from Mandevilla velutina: evidence for a selective inhibition of kinin B1 receptor-mediated responses. Regul Pept 2006; 136: 98-104
  • 4 Biondo R, Soares AM, Bertoni BW, França SC, Pereira AMS. Direct organogenesis of Mandevilla illustris (Vell) Woodson and effects of its aqueous extract on the enzymatic and toxic activities of Crotalus durissus terrificus snake venom. Plant Cell Rep 2004; 22: 549-552
  • 5 Calixto JB, Nicolau M, Yunes RA. The selective antagonism of bradykinin action on rat isolated uterus by crude Mandevilla velutina extract. Br J Pharmacol 1985; 85: 729-731
  • 6 Niero R, Alves RV, Filho VC, Calixto JB, Hawkes JE, SantʼAna AE, Yunes RA. A new anti-oedematogenic nor-pregnane derivative isolated from Mandevilla illustris . Planta Med 2002; 68: 850-853
  • 7 Cordeiro SZ, Simas NK, Arruda RCO, Sato A. Composition of epicuticular wax layer of two species of Mandevilla (Apocynoideae, Apocynaceae) from Rio de Janeiro, Brazil. Biochem Syst Ecol 2011; 39: 198-202
  • 8 Greenhan J, Harborne JB, Williams CA. Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV spectral analysis. Phytochem Anal 2003; 14: 100-118
  • 9 Justino GC, Borges CM, Florêncio MH. Electrospray ionization tándem mass spectrometry fragmentation of protonated flavone and flavonol aglycones: a re-examination. Rapid Commun Mass Spectrom 2009; 23: 237-248
  • 10 Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 2012; 69: 247-266
  • 11 Zhao Y, Vanhoutte PM, Leung SWS. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015; 129: 83-94
  • 12 Parkington HC, Coleman HA, Tare M. Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res 2004; 49: 509-514
  • 13 Achike FI, Kwan CY. Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway. Clin Exp Pharmacol Physiol 2003; 30: 605-615
  • 14 Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch 2010; 459: 807-816
  • 15 Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 1997; 49: 253-278
  • 16 Kim EY, Jho HK, Kim DI, Rhyu MR. Cirsium japonicum elicits endothelium-dependent relaxation via histamine H1-receptor in rat thoracic aorta. J Ethnopharmacol 2008; 116: 223-227
  • 17 Nakamura Y, Matsumoto H, Todoki K. Endothelium-dependent vasorelaxation induced by black currant concentrate in rat thoracic aorta. Jpn J Pharmacol 2002; 89: 29-35
  • 18 Raimundo JM, Trindade AP, Velozo LS, Kaplan MA, Sudo RT, Zapata-Sudo G. The lignan eudesmin extracted from Piper truncatum induced vascular relaxation via activation of endothelial histamine H1 receptors. Eur J Pharmacol 2009; 606: 150-154
  • 19 Frombaum M, Clanche SL, Bonnefont-Rousselot D, Borderie D. Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and *NO bioavailability: Potential benefits to cardiovascular diseases. Biochimie 2012; 94: 269-276
  • 20 Chalopin M, Tesse A, Martinez MC, Rognan D, Arnal JF, Adriantsitohaina RA. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS One 2010; 5: e8554
  • 21 Anter E, Chen K, Shapira OM, Karas RH, Keaney Jr. JF. p38 Mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ Res 2005; 96: 1072-1078
  • 22 Wu Q, Chambliss K, Umetani M, Mineo C, Shaul PW. Non-nuclear estrogen receptor signaling in the endothelium. J Biol Chem 2011; 286: 14737-14743
  • 23 Kim KH, Young BD, Bender JR. Endothelial estrogen receptor isoforms and cardiovascular disease. Mol Cell Endocrinol 2014; 389: 65-70
  • 24 Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol Rev 2015; 67: 505-540
  • 25 Kubota Y, Tanaka N, Umegaki K, Takenaka H, Mizuno H, Nakamura K, Shinozuka K, Kunitomo M. Ginkgo biloba extract-induced relaxation of rat aorta is associated with increase in endothelial intracellular calcium level. Life Sci 2001; 69: 2327-2336
  • 26 Li PG, Sun L, Han X, Ling S, Gan WT, Xu JW. Quercetin induces rapid eNOS phosphorylation and vasodilation by an Akt-independent and PKA-dependent mechanism. Pharmacology 2012; 89: 220-228
  • 27 Hou X, Liu Y, Niu L, Cui L, Zhang M. Enhancement of voltage-gated K+ channels and depression of voltage-gated Ca2+ channels are involved in quercetin-induced vasorelaxation in rat coronary artery. Planta Med 2014; 80: 465-472
  • 28 Pérez-Vizcaíno F, Ibarra M, Cogolludo AL, Duarte J, Zaragozá-Arnáez F, Moreno L, López-López G, Tamargo J. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J Pharmacol Exp Ther 2002; 302: 66-72
  • 29 Penso J, Cordeiro KC, da Cunha CR, da Silva Castro PF, Martins DR, Lião LM, Rocha ML, de Oliveira V. Vasorelaxant activity of 7-β-O-glycosides biosynthesized from flavonoids. Eur J Pharmacol 2014; 733: 75-80
  • 30 Si H, Wyeth RP, Liu D. The flavonoid luteolin induces nitric oxide production and arterial relaxation. Eur J Nutr 2014; 53: 269-275
  • 31 Qian LB, Wang HP, Chen Y, Chen FX, Ma YY, Bruce IC, Xia Q. Luteolin reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta by reducing oxidative stress. Pharmacol Res 2010; 61: 281-287
  • 32 Roberts RE, Allen S, Chang AP, Henderson H, Hobson GC, Karania B, Morgan KN, Pek AS, Raghvani K, Shee CY, Shikotra J, Street E, Abbas Z, Ellis K, Heer JK, Alexander SP. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels. Toxicol Appl Pharmacol 2013; 272: 797-805
  • 33 Hassan RA, Tawfik WA, Abou-Setta LM. The flavonoid constituents of Leucaena leucocephala. Growing in Egypt, and their biological activity. Afr J Tradit Complement Altern Med 2013; 11: 67-72
  • 34 Kim TJ, Kim JH, Jin YR, Yun YP. The inhibitory effect and mechanism of luteolin 7-glucoside on rat aortic vascular smooth muscle cell proliferation. Arch Pharm Res 2006; 29: 67-72
  • 35 Xia N, Bollinger L, Steinkamp-Fenske K, Förstermann U, Li H. Prunella vulgaris L. upregulates eNOS expression in human endothelial cells. Am J Chin Med 2010; 38: 599-611
  • 36 Zeraik ML, Yariwake JH. Quantification of isoorientin and total flavonoids in Passiflora edulis fruit pulp by HPLC-UV/DAD. Microchem J 2010; 96: 86-91