kleintier konkret 2016; 19(04): 10-16
DOI: 10.1055/s-0042-109922
hund
orthopädie
Enke Verlag in Georg Thieme Verlag KG Stuttgart

Bandscheiben und Wirbelsäulen im Vergleich: Hund und Mensch

Franck Forterre
1   Department für klinische Veterinärmedizin, Vetsuisse Fakultät Bern
,
Pia Düver
1   Department für klinische Veterinärmedizin, Vetsuisse Fakultät Bern
,
Niklas Bergknut
2   Department of clinical sciences of companion animals
› Author Affiliations
Further Information

Publication History

Publication Date:
24 August 2016 (online)

Die Wirbelsäulen von Hund und Mensch weisen sowohl anatomisch als auch funktionell einige Gemeinsamkeiten, aber auch Unterschiede auf. Da der Hund oft als Modell für Bandscheibenproblematiken in der Humanmedizin herangezogen wird, lohnt es sich, diese Thematik genauer zu betrachten. Interessant ist auch die Herangehensweise im Bereich der Therapie, die sich unter anderem aufgrund der unterschiedlichen Schwere der neurologischen Defizite ergibt.

 
  • Literatur

  • 1 Baltzer WI, McMichael MA, Hosgood GL et al. Randomized, blinded, placebo-controlled clinical trial of N-acetylcysteine in dogs with spinal cord trauma from acute intervertebral disc disease. Spine 2008; 33 (13): 1397-1402
  • 2 Bergknut N, Rutges JP, Kranenburg HJ et al. The dog as an animal model for intervertebral disc degeneration?. Spine 2012; 37 (5): 351-358
  • 3 Blight AR, Toombs JP, Bauer MS et al. The effects of 4-aminopyridine on neurological deficits in chronic cases of traumatic spinal cord injury in dogs: a phase I clinical trial. J Neurotrauma 1991; 8 (2): 103-119
  • 4 Bogduk N, Tynan W, Wilson AS. The nerve supply to the human lumbar intervertebral discs. J Anat 1981; 132: 39-56
  • 5 Bray JP, Burbidge HM. The canine intervertebral disk.Part Two: Degenerative changes – nonchondrodystrophoid versus chondrodystrophoid disks . J Am Anim Hosp Assoc 1998; 34 (2): 135-144
  • 6 Cole T, Burkhardt D, Ghosh P et al. Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J Orthop Res 1985; 3 (3): 277-291
  • 7 Cole TC, Ghosh P, Hannan NJ et al. The response of the canine intervertebral disc to immobilization produced by spinal arthrodesis is dependent on constitutional factors. J Orthop Res 1987; 5 (3): 337-347
  • 8 Cotterill PC, Kostuik JP, D’Angelo G et al. An anatomical comparison of the human and bovine thoracolumbar spine. J Orthop Res 1986; 4 (3): 298-303
  • 9 Forsythe WB, Ghoshal NG. Innervation of the canine thoracolumbar vertebral column. Anat Rec 1984; 208 (1): 57-63
  • 10 Ghosh P, Taylor TK, Braund KG et al. The collagenous and non-collagenous protein of the canine intervertebral disc and their variation with age, spinal level and breed. Gerontology 1976; 22 (3): 124-134
  • 11 Ghosh P, Taylor TK, Braund KG. The variation of the glycosaminoglycans of the canine intervertebral disc with ageing. I. Chondrodystrophoid breed. Gerontology 1977; 23 (2): 87-98
  • 12 Ghosh P, Taylor TK, Braund KG. Variation of the glycosaminoglycans of the intervertebral disc with ageing. II. Non-chondrodystrophoid breed. Gerontolog 1977; 23 (2): 99-109
  • 13 Gracovetsky S. The Spinal Engine. New-York: Springer; 1989
  • 14 Griffiths IR. Some aspects of the pathology and pathogenesis of the myelopathy caused by disc protrusions in the dog. J Neurol Neurosurg Psychiatry 1972; 35 (39): 403-413
  • 15 Hansen HJ. A pathologic-anatomical study on disc degeneration in dog, with special reference to the so-called enchondrosis intervertebralis. Acta Orthop Scand Suppl 1952; 11: 1-117
  • 16 Hoerlein BF. Intervertebral disc protrusions in the dog. I. Incidence and pathological lesions. Am J Vet Res 1953; 14 (51): 260-269
  • 17 Hoerlein BF. Comparative disc disease: man and dog (for surgery). J Am Anim Hosp Assoc 1979; 15: 535-545
  • 18 Hukuda S, Jameson HD, Wilson CB. Experimental cervical myelopathy. 3. The canine corticospinal tract. Anatomy and function. Surg Neurol 1973; 1 (2): 107-114
  • 19 Hunter CJ, Matyas JR, Duncan NA. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 2003; 9 (4): 667-677
  • 20 Jeffery ND, Lakatos A, Franklyn RJ. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 2005; 22 (11): 1282-1293
  • 21 Johnson EF, Caldwell RW, Berryman HE et al. Elastic fibers in the anulus fibrosus of the dog intervertebral disc. Acta Anat 1984; 118 (4): 238-242
  • 22 Levine JM, Levine GJ, Porter BF et al. Naturally occurring disk herniation in dogs: an opportunity for pre-clinical spinal cord injury research. J Neurotrauma 2011; 28 (4): 675-688
  • 23 Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma 2004; 21 (4): 429-440
  • 24 Pearce RH, Thompson JP, Bebault GM et al. Magnetic resonance imaging reflects the chemical changes of aging degeneration in the human intervertebral disk. J Rheumatol Suppl 1991; 27: 42-43
  • 25 Putz R. The functional morphology of the superior articular processes of the lumbar vertebrae. J Anat 1985; 143: 181-187
  • 26 Putz R. The detailed functional anatomy of the ligaments of the vertebral column. Ann Anat 1992; 174 (1): 40-47
  • 27 Putz RL, Müller-Gerbl M. The vertebral column: a phylogenetic failure? A theory explaining the function and vulnerability of the human spine. Clin Anat 1996; 9 (3): 205-212
  • 28 Smit TH. The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations. Eur Spine J 2002; 11 (2): 137-144
  • 29 Smith PM, Jeffery ND. Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury. Brain Pathol 2006; 16 (2): 99-109
  • 30 Taylor JR. Growth of human intervertebral discs and vertebral bodies. J Anat 1975; 120: 49-68
  • 31 Willenegger S, Friess AE, Lang J et al. Immunohistochemical demonstration of lumbar intervertebral disc innervation in the dog. Anat Histol Embryol 2005; 34 (2): 123-128
  • 32 Zimmerman MC, Vuono-Hawkins M, Parsons JR et al. The mechanical properties of the canine lumbar disc and motion segment. Spine 1992; 17 (2): 213-220