RSS-Feed abonnieren
DOI: 10.1055/s-0042-110856
Phenylpyruvic Acid-2-O-β-D-Glucoside Attenuates High Glucose-Induced Apoptosis in H9c2 Cardiomyocytes
Publikationsverlauf
received 13. Dezember 2015
revised 01. Juni 2016
accepted 14. Juni 2016
Publikationsdatum:
12. Juli 2016 (online)
Abstract
Chronic hyperglycemia is closely associated with impaired substrate metabolism, dysregulated mitochondrial membrane potential, and apoptosis in the diabetic heart. As adult cardiomyocytes display a limited capacity to regenerate following an insult, it is essential to protect the myocardium against the detrimental effects of chronic hyperglycemia. This study therefore investigated whether phenylpyruvic acid-2-O-β-D-glucoside, present in Aspalathus linearis (rooibos), is able to attenuate hyperglycemia-induced damage in H9c2 cardiomyocytes. H9c2 cardiomyocytes were exposed to a high glucose concentration (33 mM) prior to treatment with phenylpyruvic acid-2-O-β-D-glucoside (1 µM), metformin (1 µM), or a combination of phenylpyruvic acid-2-O-β-D-glucoside and metformin (both at 1 µM). Our data revealed that high glucose exposure increased cardiac free fatty acid uptake and oxidation, mitochondrial membrane potential, and apoptosis (caspase 3/7 activity and TUNEL), and decreased the Bcl2/Bax protein expression ratio. Phenylpyruvic acid-2-O-β-D-glucoside treatment, alone or in combination with metformin, attenuated these glucose-induced perturbations, confirming its protective effect in H9c2 cardiomyocytes exposed to chronic hyperglycemia.
Key words
phenylpyruvic acid-2-O-β-D-glucoside - hyperglycemia - fatty acid uptake and oxidation - myocardial apoptosis-
References
- 1 World Health Organization (WHO). World health statistics 2012. Available at. http://www.who.int/gho/publications/world_health_statistics/WHS2012_IndicatorCompendium.pdf Accessed December 9, 2015
- 2 International Diabetes Federation (IDF). IDF diabetes atlas, 7th edition. Available at. http://www.diabetesatlas.org/ Accessed December 12, 2015
- 3 Zhou L, Deng W, Zhou L, Fang P, He D, Zhang W, Liu K, Hu R. Prevalence, incidence and risk factors of chronic heart failure in the type 2 diabetic population: systematic review. Curr Diabetes Rev 2009; 5: 171-184
- 4 Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation 2007; 115: 3213-3223
- 5 Damasceno A, Cotter G, Dzudie A, Sliwa K, Mayosi BM. Heart failure in Sub-Saharan Africa: time for action. J Am Coll Cardiol 2007; 50: 1688-1693
- 6 Sliwa K, Damasceno A, Mayosi BM. Heart disease in Africa: epidemiology and etiology of cardiomyopathy in Africa. Circulation 2005; 112: 3577-3583
- 7 Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016; 310: H153-H173
- 8 Kapur A, De Palma R. Mortality after myocardial infarction in patients with diabetes mellitus. Heart 2007; 93: 1504-1506
- 9 Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107: 1058-1070
- 10 Opie LH. Metabolic management of acute myocardial infarction comes to the fore and extends beyond control of hyperglycemia. Circulation 2008; 117: 2172-2177
- 11 Dyntar D. Diabetic cardiomyopathy: effects of fatty acids and glucose on adult rat cardiomyocytes [dissertation]. Zürich: Naturwissenschaften ETH Zürich; 2003: Nr.15175
- 12 Carlsson M, Wessman Y, Almgren P, Groop L. High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 2000; 20: 1588-1594
- 13 Naidu PB, Ponmurugan P, Begum MS, Mohan K, Meriga B, RavindarNaik R, Saravanan G. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats. J Sci Food Agric 2015; 95: 3177-3182
- 14 Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 2010; 88: 229-240
- 15 Sun X, Chen RC, Yang ZH, Sun GB, Wang M, Ma XJ, Yang LJ, Sun XB. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem Toxicol 2014; 63: 221-232
- 16 Dludla PV, Muller CJ, Louw J, Joubert E, Salie R, Opoku AR, Johnson R. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine 2014; 21: 595-601
- 17 Snijman PW, Joubert E, Ferreira D, Li XC, Ding Y, Green IR, Gelderblom WC. Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and trolox. J Agric Food Chem 2009; 57: 6678-6684
- 18 Chellan N, Joubert E, Strijdom H, Roux C, Louw J, Muller CJ. Aqueous extract of unfermented honeybush (Cyclopia maculata) attenuates STZ-induced diabetes and β-cell cytotoxicity. Planta Med 2014; 80: 622-629
- 19 Muller CJ, Joubert E, Pheiffer C, Ghoor S, Sanderson M, Chellan N, Fey SJ, Louw J. Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid, an α-hydroxy acid from rooibos (Aspalathus linearis) with hypoglycemic activity. Mol Nutr Food Res 2013; 57: 2216-2222
- 20 Marais C, Steenkamp JA, Ferreira D. Occurrence of phenylpyruvic acid in woody plants: biosynthetic significance and synthesis of an enolic glucoside derivative. J Chem Soc Perkin Trans 1 1996; 24: 2915-2918
- 21 Joubert E, de Beer D, Malherbe CJ, Muller N, Bonnet SL, van der Westhuizen JH, Ferreira D. Occurrence and sensory perception of Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in rooibos (Aspalathus linearis). Food Chem 2013; 136: 1078-1085
- 22 Mathijs I, Da Cunha DA, Himpe E, Ladriere L, Chellan N, Roux CR, Joubert E, Muller C, Cnop M, Louw J, Bouwens L. Phenylpropenoic acid glucoside augments pancreatic beta cell mass in high-fat diet-fed mice and protects beta cells from ER stress-induced apoptosis. Mol Nutr Food Res 2014; 58: 1980-1990
- 23 Kwak S, Han MS, Bae JS. Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibit endothelial protein C receptor shedding in vitro and in vivo . Fitoterapia 2015; 100: 179-186
- 24 Pantsi WG, Marnewick JL, Esterhuyse AJ, Rautenbach F, van Rooyen J. Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine 2011; 18: 1220-1228
- 25 Rajamani U, Essop MF. Hyperglycemia-mediated activation of the hexosamine biosynthetic pathway results in myocardial apoptosis. Am J Physiol Cell Physiol 2010; 299: C139-C147
- 26 Di Paola M, Lorusso M. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta 2006; 1757: 1330-1337
- 27 Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35: 495-516
- 28 Schwarz K, Simonis G, Yu X, Wiedemann S, Strasser RH. Apoptosis at a distance: remote activation of caspase-3 occurs early after myocardial infarction. Mol Cell Biochem 2006; 281: 45-54
- 29 Clyne AM, Zhu H, Edelman ER. Elevated fibroblast growth factor-2 increases tumor necrosis factor-α induced endothelial cell death in high glucose. J Cell Physiol 2008; 217: 86-92
- 30 Behl Y, Krothapalli P, Desta T, DiPiazza A, Roy S, Graves DT. Diabetes-enhanced tumor necrosis factor-α production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol 2008; 172: 1411-1418
- 31 Yu W, Wu J, Cai F, Xiang J, Zha W, Fan D, Guo S, Ming Z, Liu C. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS One 2012; 7: e52013
- 32 Johnson R, Dludla P, Joubert E, February F, Mazibuko S, Ghoor S, Muller C, Louw J. Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose-induced shifts in substrate preference and apoptosis. Mol Nutr Food Res 2016; 60: 922-934
- 33 Heinzelmann-Schwarz V, Fedier A, Hornung R, Walt H, Haller U, Fink D. Role of p53 and ATM in photodynamic therapy-induced apoptosis. Lasers Surg Med 2003; 33: 182-189
- 34 Hemann MT, Lowe SW. The p53–Bcl-2 connection. Cell Death Differ 2006; 13: 1256-1259
- 35 Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Okigaki M, Adachi S, Tanaka H, Takamatsu T, Matsubara H. p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation. Circ Heart Fail 2012; 5: 106-115
- 36 Karagiannis TC, Lin AJ, Ververis K, Chang L, Tang MM, Okabe J, El-Osta A. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes. Aging (Albany NY) 2010; 2: 659-668
- 37 Nugent C, Prins JB, Whitehead JP, Wentworth JM, Chatterjee VK, OʼRahilly S. Arachidonic acid stimulates glucose uptake in 3T3-L1 adipocytes by increasing GLUT1 and GLUT4 levels at the plasma membrane. Evidence for involvement of lipoxygenase metabolites and peroxisome proliferator-activated receptor gamma. J Biol Chem 2001; 276: 9149-9157
- 38 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
- 39 Chellan N. The effect of Cyclopia maculata extract on β-cell function, protection against oxidative stress and cell survival [dissertation]. Stellenbosch University; 2014
- 40 Mahmood T, Yang P. Western blot: technique, theory, and trouble shooting. N Am J Med Sci 2012; 4: 429-434