Planta Med 2016; 82(14): 1225-1235
DOI: 10.1055/s-0042-111208
Reviews
Georg Thieme Verlag KG Stuttgart · New York

DNA Barcoding for the Identification of Botanicals in Herbal Medicine and Dietary Supplements: Strengths and Limitations

Iffat Parveen
1   National Center for Natural Products Research, Thad Cochran Research Center, School of Pharmacy, University of Mississippi, University, Mississippi, USA
,
Stefan Gafner
2   American Botanical Council, Austin, Texas, USA
,
Natascha Techen
1   National Center for Natural Products Research, Thad Cochran Research Center, School of Pharmacy, University of Mississippi, University, Mississippi, USA
,
Susan J. Murch
3   Department of Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
,
Ikhlas A. Khan
1   National Center for Natural Products Research, Thad Cochran Research Center, School of Pharmacy, University of Mississippi, University, Mississippi, USA
› Author Affiliations
Further Information

Publication History

received 19 April 2016
revised 15 June 2016

accepted 22 June 2016

Publication Date:
08 July 2016 (online)

Abstract

In the past decades, the use of traditional medicine has increased globally, leading to a booming herbal medicine and dietary supplement industry. The increased popularity of herbal products has led to a rise in demand for botanical raw materials. Accurate identification of medicinal herbs is a legal requirement in most countries and prerequisite for delivering a quality product that meets consumer expectations. Traditional identification methods include botanical taxonomy, macroscopic and microscopic examination, and chemical methods. Advances in the identification of biological species using DNA-based techniques have led to the development of a DNA marker-based platform for authentication of plant materials. DNA barcoding, in particular, has been proposed as a means to identify herbal ingredients and to detect adulteration. However, general barcoding techniques using universal primers have been shown to provide mixed results with regard to data accuracy. Further technological advances such as mini-barcodes, digital polymerase chain reaction, and next generation sequencing provide additional tools for the authentication of herbs, and may be successful in identifying processed ingredients used in finished herbal products. This review gives an overview on the strengths and limitations of DNA barcoding techniques for botanical ingredient identification. Based on the available information, we do not recommend the use of universal primers for DNA barcoding of processed plant material as a sole means of species identification, but suggest an approach combining DNA-based methods using genus- or species-specific primers, chemical analysis, and microscopic and macroscopic methods for the successful authentication of botanical ingredients used in the herbal dietary supplement industry.

Supporting Information

 
  • References

  • 1 Hebert PDN, Cywinska A, Ball SL, de Waard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B 2003; 270: 313-321
  • 2 Eaton MJ, Meyers GL, Kolokotronis SO, Leslie MS, Martin AP, Amato G. Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Cons Genet 2010; 11: 1389-1404
  • 3 Jeanson ML, Labat JN, Little DP. DNA barcoding: a new tool for palm taxonomists?. Ann Bot 2011; 108: 1445-1451
  • 4 Muellner AN, Schaefer H, Lahaye R. Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae). Mol Ecol Resour 2011; 11: 450-460
  • 5 Yesson C, Bárcenas RT, Hernández HM, de la Luz Riz-Maqueda M, Prado A, Rodríguez VM, Hawkins JA. DNA barcodes for Mexican Cactaceae, plants under pressure from wild collecting. Mol Ecol Resour 2011; 11: 775-783
  • 6 Coyle HM, Lee CL, Lin WY, Lee HC, Palmbach TM. Forensic botany: using plant evidence to aid in forensic death investigation. Croat Med J 2005; 46: 606-612
  • 7 Ferri G, Alù M, Corradini B, Beduschi G. Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med 2009; 123: 395-401
  • 8 Bleeker W, Klausmeyer S, Peintinger M, Dienst M. DNA sequences identify invasive alien Cardamine at Lake Constance. Biol Conserv 2008; 141: 692-698
  • 9 Van de Wiel CCM, van der Schoot J, van Valkenburg JLCH, Duistermaat H, Smulders MJM. DNA barcoding discriminates the noxious invasive plant species, floating pennywort (Hydrocotyle ranunculoides L.f.), from non-invasive relatives. Mol Ecol Resour 2009; 9: 1086-1091
  • 10 Gonzalez MA, Baraloto C, Engel J, Mori SA, Pétronelli P, Riéra B, Roger A, Thébaud C, Chave J. Identification of amazonian trees with DNA barcodes. PLoS One 2009; 4: e7483
  • 11 Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C, Brysting AK, Sønstebø JH, Ims RA, Yoccoz NG, Taberlet P. Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool 2009; 6: 16-24
  • 12 Valentini A, Miquel C, Nawaz MA, Bellemain EVA, Coissac E, Pompanon F, Gielly L, Cruaud C, Nascetti G, Wincker P, Swenson JE, Taberlet P. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 2009; 9: 51-60
  • 13 Jaakola L, Suokas M, Häggman H. Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 2010; 123: 494-500
  • 14 Yao H, Song JY, Ma XY, Liu C, Li Y, Xu HX, Han JP, Duan LS, Chen SL. Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region. Planta Med 2009; 75: 667-669
  • 15 Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C. Validation of ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 2010; 5: e8613
  • 16 Asahina H, Shinozaki J, Masuda K, Morimitsu Y, Satake M. Identification of medicinal Dendrobium species by phylogenetic analyses using matK and rbcL sequences. J Nat Med 2010; 64: 133-138
  • 17 Srirama R, Senthilkumar U, Sreejayan N, Ravikanth G, Gurumurthy BR, Shivanna MB, Sanjappa M, Ganeshaiah KN, Uma Shaanker R. Assessing species admixtures in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools. J Ethnopharmacol 2010; 130: 208-215
  • 18 Natural Products Foundation. New study shows dietary supplements industry contributes more than 60 billion to national economy. Available at. http://www.naturalproductsinfo.org/index.php?src=news&srctype=detail&%20category=DSIB%2520Releases&%20refno=181&%20view=DSIB_Releases_Detail Accessed April 18, 2016
  • 19 Barnes J. Pharmacovigilance of herbal medicines. Drug Saf 2003; 26: 829-851
  • 20 Chen CH, Dickman KG, Moriya M, Zavadil J, Sidorenko VS, Edwards KL, Gnatenko DV, Wu L, Turesky RJ, Wu XR, Pu YS, Grollman AP. Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S A 2012; 109: 8241-8246
  • 21 Debelle FD, Vanherweghem JL, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int 2008; 74: 158-169
  • 22 Vanherweghem JL, Tielemans C, Abramowicz D, Depierreux M, Vanhaelen-Fastre R, Vanhaelen M, Dratwa M, Richard C, Vandervelde D, Verbeelen D, Jadoul M. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 1993; 341: 387-391
  • 23 Hu SY. The role of botany in Chinese medicinal material research: the case of eleuthero. In: Chang HM, Yeung HW, Tso W-W, Koo A, eds. Advances in Chinese medicinal materials research. Singapore: World Scientific Publishing; 1985: 28-33
  • 24 Upton R, Graff A, Jolliffe G, Länger R, Williamson E. American Herbal Pharmacopoeia: Botanical Pharmacognosy – microscopic Characterization of botanical Medicines. Boca Raton: CRC Press; 2011
  • 25 Chen S, Pang X, Song J, Shi L, Yao H, Han J, Leon C. A renaissance in herbal medicine identification: from morphology to DNA. Biotech Adv 2014; 32: 1237-1244
  • 26 De Boer HJ, Ichim MC, Newmaster SG. DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf 2015; 38: 611-620
  • 27 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-410
  • 28 Barcode of Life Data System. Available at. http://www.boldsystems.org/index.php/Public_SearchTerms Accessed May 23, 2016
  • 29 Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN. DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 2009; 9: 237-242
  • 30 Techen N, Parveen I, Pan Z, Khan IA. DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 2014; 25: 103-110
  • 31 Murray M, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 1980; 8: 4321-4325
  • 32 Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1983; 1: 19-21
  • 33 Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987; 19: 11-15
  • 34 Lodhi MA, Ye GN, Weeden NF, Reisch BI. A simple and efficient method DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 1994; 12: 6-13
  • 35 Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 1997; 25: 4692-4693
  • 36 Alaey M, Naderi R, Vezvaei A, Khalighi A, Salami A. Comparing study between four different methods of genomic DNA extraction from Cyclamen persicum Mill. Int J Agric Biol 2005; 7: 882-884
  • 37 Akkurt M. Comparison between modified DNA extraction protocols and commercial isolation kits in grapevine (Vitis vinifera L.). Genet Mol Res 2012; 11: 2343-2351
  • 38 Xin Z, Chen J. A high throughput DNA extraction method with high yield and quality. Plant Methods 2012; 8: 26-32
  • 39 Sika KC, Kefela T, Adoukonou-Sagbadja H, Ahoton L, Saidou A, Baba-Moussa L, Baptiste LJ, Korconi SO, Gachomo EW. A simple and efficient genomic DNA extraction protocol for large scale genetic analyses of plant biological systems. Plant Gene 2015; 2: 43-45
  • 40 Porebski S, Bailey LG, Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 1997; 15: 8-15
  • 41 Barnwell P, Blanchard AN, Bryant JA, Smirnoff N, Weir AF. Isolation of DNA from the highly mucilaginous succulent plant Sedum telephium . Plant Mol Biol Rep 1998; 16: 133-138
  • 42 Khanuja SPS, Shasany AK, Darokar MP, Kumar S. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 1999; 17: 1-7
  • 43 Sahu SK, Thangaraj M, Kathiresan K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol Biol 2012; 2012: 1-6
  • 44 Fang G, Hammar S, Grumet R. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 1992; 13: 52-54
  • 45 Peterson DG, Boehm KS, Stack SM. Isolation of milligram quantities of nuclear DNA from tomato (Lycopersicon esculentum), a plant containing high levels of polyphenolic compounds. Plant Mol Biol Rep 1997; 15: 148-153
  • 46 Cavallari MM, Siqueria MVBM, Val TM, Pavanelli JC, Monteiro M, Grando C, Pinheiro JB, Zucchi MI, Gimenes MA. A modified acidic approach for DNA extraction from plant species containing high levels of secondary metabolites. Gen Mol Res 2012; 13: 6497-6502
  • 47 Han J, Pang X, Liao B, Yao H, Song J, Chen S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep 2016; 6: 18723
  • 48 Katterman FRH, Shattuck VI. An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amounts of phenolic terpenoids and tannins. Prep Biochem 1983; 13: 347-359
  • 49 Wallace L, Boilard SMAL, Eagle SHC, Spall JL, Shokralla S, Hajibabaei M. DNA barcodes for everyday life: routine authentication of natural health products. Food Res Int 2012; 49: 446-452
  • 50 Costa J, Amaral JS, Fernandes TJR, Batista A, Oliveira MB, Mafra I. DNA extraction from plant food supplements: Influence of different pharmaceutical excipients. Mol Cell Probes 2015; 29: 473-478
  • 51 Little DP. Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding. Genome 2014; 57: 513-516
  • 52 Novak J, Grausgruber-Gröger S, Lukas B. DNA-based authentication of plant extracts. Food Res Int 2007; 40: 388-392
  • 53 Harnly J, Chen P, Sun J, Huang H, Colson KL, Yuk J, McCoy JA, Reynaud DT, Harrington PB, Fletcher EJ. Comparison of flow injection MS, NMR and DNA sequencing: methods for identification and authentication of black cohosh (Actaea racemosa). Planta Med 2016; 82: 250-262
  • 54 Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Botany 2006; 84: 335-341
  • 55 Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH–psbA spacer region. PLoS One 2007; 2: e508
  • 56 CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci U S A 2009; 106: 12794-12797
  • 57 Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One 2011; 6: e19254
  • 58 Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SCH. Discriminating plant species in a local temperate flora using the rbcL + matK DNA barcode. Methods Ecol Evol 2011; 2: 333-340
  • 59 China Plant BOL Group. Comparative analysis of a large dataset indicates that ITS should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 2011; 108: 19641-19646
  • 60 Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, Pand X, Xu H, Chen S. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 2010; 130: 116-121
  • 61 Sun ZY, Chen SL. Identification of cortex herbs using the DNA barcode nrITS2. J Nat Med 2013; 67: 296-302
  • 62 Pang XH, Shi LC, Song JY, Chen XC, Chen SL. Use of the potential DNA barcode ITS2 to identify herbal materials. J Nat Med 2013; 67: 571-575
  • 63 Zhu X, Zhang Y, Liu X, Hou D, Gao T. Authentication of commercial processed Glehniae Radix (Beishashen) by DNA barcodes. Chin Med 2015; 10: 35-43
  • 64 Rodriguez R, White Jr. J, Arnold A, Redman R. Fungal endophytes: diversity and functional roles. New Phyto 2009; 182: 314-330
  • 65 Ivanova NV, Kuzmina ML, Braukmann TWA, Borisenko AV, Zakharov EV. Authentication of herbal supplements using next-generation sequencing. PLoS One 2016; 11: e0156426
  • 66 Cheng T, Xu C, Lei L, Li C, Zhang Y, Zhou S. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol Eco Res 2016; 16: 138-149
  • 67 White TJ, Bruns T, Lee S, Taylor J. Amplification and direct Sequencing of fungal ribosomal RNA Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors PCR Protocols: a Guide to Methods and Applications. San Diego: Academic Press; 1990: 315-322
  • 68 Tai V, Lindstrom SC, Saunders GW. Phylogeny of the Dumontiaceae (Gigartinales, Rhodophyta) and associated families based on SSU rDNA and internal transcribed spacer sequence data. J Phycology 2001; 37: 184-196
  • 69 Saunders GW, Kucera H. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogam Algol 2010; 31: 487-528
  • 70 Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 2011; 108: 19641-19646
  • 71 Little DP, Jeanson ML. DNA barcode authentication of saw palmetto herbal dietary supplements. Sci Rep 2013; 3: 3518
  • 72 Little DP. Confirming species identity of herbal dietary supplements, an example from devilʼs claw. Rockville, MD: Adulteration and Fraud in Food Ingredients and Dietary Supplements Workshop; 2015
  • 73 Mullis K. The unusual origin of the polymerase chain reaction. Sci Am 1990; 262: 56-61 64–65
  • 74 Kress WJ, Wudrack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 2005; 102: 8369-8374
  • 75 Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 2005; 105: 2923-2928
  • 76 Pawluczyk M, Weiss J, Links MG, Aranguren ME, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem 2015; 407: 1841-1848
  • 77 Soares S, Amaral JS, Oliveira MB, Mafra I. Improving DNA isolation from honey for the botanical origin identification. Food Control 2015; 48: 130-136
  • 78 Costa J, Melo VS, Santos CG, Oliveira MB, Mafra I. Tracing tree nut allergens in chocolate: A comparison of DNA extraction protocols. Food Chem 2015; 187: 469-476
  • 79 Green SJ, Venkataraman R, Naqib A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One 2015; 10: e0128122
  • 80 Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A 1999; 96: 9236-9241
  • 81 Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977; 74: 5463-5467
  • 82 Polz MF, Cavanaugh CM. Bias in template-to-product ratios in multi template PCR. Appl Environ Microbiol 1998; 64: 3724-3730
  • 83 Shokralla S, Gibson JF, Nikbakht H, Janzen DH, Hallwachs W, Hajibabaei M. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol Ecol Resour 2014; 14: 892-901
  • 84 Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biology 2011; 12: R18
  • 85 Kircher M, Kelso J. High-throughput DNA sequencing-concepts and limitations. Bioessays 2010; 32: 524-536
  • 86 Moore MJ, Bell CD, Soltis PS, Soltis DE. Using plastid genome scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci U S A 2007; 104: 19363-19368
  • 87 Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 2009; 7: 84
  • 88 Sucher NJ, Hennell JR, Carles MC. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants. Methods Mol Biol 2012; 862: 13-22
  • 89 Sarwat M, Yamdagni MM. DNA barcoding, microarrays and next generation sequencing: recent tools for genetic diversity estimation and authentication of medicinal plants. Crit Rev Biotechnol 2016; 36: 191-203
  • 90 Shokralla S, Spall JL, Gibson JF, Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol Ecol 2012; 21: 1794-1805
  • 91 Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next generation biodiversity assessment using DNA metabarcoding. Mol Ecol 2012; 21: 2045-2050
  • 92 Coghlan M, Haile J, Houston J, Murray D, White N, Moolhuijzen P, Bellgard MI, Bunce M. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 2012; 8: e1002657
  • 93 Zuo Y, Chen Z, Kondo K, Funamoto T, Wen J, Zhou S. DNA barcoding of Panax species. Planta Med 2011; 77: 182-187
  • 94 Stoeckle MY, Gamble CC, Kirpekar R, Young G, Ahmed S, Little DP. Commercial teas highlight plant DNA barcode identification successes and obstacles. Sci Rep 2011; 1: 1-7
  • 95 Baker DA, Stevenson DW, Little DP. DNA barcode identification of black cohosh herbal dietary supplements. J AOAC Int 2012; 95: 1023-1034
  • 96 Vassou SL, Kusuma G, Madasamy P. DNA barcoding for species identification from dried and powdered plant parts: a case study with authentication of the raw drug market samples of Sida cordifolia . Gene 2015; 559: 86-93
  • 97 Seethapathy GS, Ganesh D, Kumar JUS, Senthilkumar U, Newmaster SG, Ragupathy S, Uma Shaanker R, Ravikanth G. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int J Legal Med 2014; 129: 693-700
  • 98 Palhares RM, Drummond MG, Alves BS, Brasil F, Cosenza GP, Brandao MG, Oliveira G. Medicinal plants recommended by the World Health Organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS One 2015; 10: e0127866
  • 99 Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 2013; 11: 222-234
  • 100 Gafner S, Blumenthal M, Reynaud DH, Foster S, Techen N. ABC Review and Critique of the Research Article “DNA Barcoding Detects Contamination and Substitution in North American Herbal Products” by Newmaster et al. Available at: http://cms.herbalgram.org/heg/volume10/11November/DNAbarcodingReviewandCritique.html?t=1383684796. Accessed June 30; 2016
  • 101 New York State Office of the Attorney General. A.G. Schneiderman asks major retailers to halt sales of certain herbal supplements as DNA tests fail to detect plant materials listed on majority of products tested. Press release, February 3, 2015. Available at. http://www.ag.ny.gov/press-release/ag-schneiderman-asks-major-retailers-halt-sales-certain-herbal-supplements-dna-tests Accessed January 21, 2016
  • 102 OʼConnor A. New York attorney general targets supplements at major retailers. New York Times. February 3, 2015. Available at. http://well.blogs.nytimes.com/2015/02/03/new-york-attorney-general-targets-supplements-at-major-retailers/ Accessed June 13, 2015
  • 103 Harbaugh Reynaud DT, Mischler BD, Neal-Kababick J, Brown PN. The capabilities and limitations of DNA barcoding of dietary supplements. March 2015. Available at. http://www.crnusa.org/NYAG/The-Capabilities-and-Limitations-of-DNA-Testing-FINAL-3-10-2015.pdf Accessed March 16, 2015
  • 104 Coutinho Moraes DF, Still DW, Lum MR, Hirsch AM. DNA-based authentication of botanicals and plant-derived dietary supplements: where have we been, and where are we going?. Planta Med 2015; 81: 687-695
  • 105 AOAC International. Appendix K: Guidelines for dietary supplements and botanicals. Available at: http://www.eoma.aoac.org/app_k.pdf Accessed June 30, 2016
  • 106 Shukla AK, Mall M, Rai SK, Singh S, Nair P, Parashar G, Shasany AK, Singh SC, Joshi VK, Khanuja SPS. A transcriptomic approach for exploring the molecular basis for dosha-balancing property-based classification of plants in Ayurveda. Mol Biol Rep 2013; 40: 3255-3262
  • 107 Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotech J 2016; 14: 8-21