Subscribe to RSS
DOI: 10.1055/s-0042-112228
Erste Ergebnisse in der Anwendung resorbierbarer, lokaler Antibiotikaträger bei Rezidivosteomyelitiden
Early Results of Adjuvant Topical Treatment of Recurrent Osteomyelitis with Absorbable Antibiotic CarriersPublication History
Publication Date:
12 January 2017 (online)
Zusammenfassung
Die Behandlung muskuloskeletaler Infektionen beruht hauptsächlich auf 2 Säulen: dem radikalen chirurgischen Débridement sowie der systemischen Antibiotikagabe. Die zusätzliche lokale Antibiotikatherapie hat sich bisher nicht allgemein durchgesetzt, ihr evidenzbasierter Wirksamkeitsnachweis steht aus. Vor allem spezialisierte Abteilungen wollen auf sie jedoch nicht verzichten, wenn auch das praktische Vorgehen unterschiedlich ist. Das etablierte Polymethylmetacrylat (PMMA) als Trägermaterial in Form einer Antibiotikakette weist in der Praxis einige Nachteile auf, weshalb die Verwendung von resorbierbaren Trägersystemen zunimmt. Insbesondere zeigen Antibiotikaträger auf Kalziumsulfatbasis positive Ergebnisse.
Methoden Zwischen Februar 2014 und Mai 2015 wurden 93 Patienten, welche ein Osteomyelitisrezidiv erlitten hatten und mit Primärimplantation einer PMMA-Kette nicht zur Infektberuhigung gelangt waren, mit resorbierbaren, lokalen Antibiotikaträgern auf Kalziumsulfatbasis versorgt. Der Behandlungsalgorithmus umfasste die Durchführung eines radikalen Débridements und die Implantation einer handelsüblichen PMMA-Kette als lokalem Antibiotikaträger. Beim Ausbleiben einer Infektremission wurden im Rahmen der operativen Revision die Ketten entfernt und resorbierbare Antibiotikaträger resistogrammgerecht appliziert. Gemäß der Klassifikation von Cierny und Mader wurden 10 Fälle als Typ I, 5 Fälle als Typ II und 55 bzw. 23 Fälle als Typ III und IV klassifiziert. Der mittlere Nachuntersuchungszeitraum betrug 11 Monate. Zur Verfügung standen 2 unterschiedliche Trägersysteme auf Kalziumsulfatbasis (Osteoset® Fa. Wright Medical Technology Inc., Arlington, TN, USA; Herafill® Fa. Heraeus Medical GmbH, Wehrheim). Diese wurden vorgefertigt mit Tobramycin und Gentamycin verwendet. Alternativ bestand die Möglichkeit, ein frei wählbares, wasserlösliches Antibiotikum zu Osteoset® beizumengen. Parallel erfolgte die Durchführung einer systemischen Antibiotikagabe gemäß dem ermittelten Resistogramm.
Ergebnisse Die häufigsten Entitäten waren die Femur- (36 %) und Tibiaosteitis (29 %). Vancomycin (38 %) und Tobramycin (38 %) waren die am häufigsten angewendeten lokalen Antibiotika. Hiernach folgen Gentamycin (17 %), Ceftriaxon (4 %), Fosfomycin (2 %) und Colistin (1 %). Parallel erfolgte die Durchführung einer systemischen Antibiotikagabe gemäß dem ermittelten Resistogramm. In 85 % aller Fälle konnte damit eine Infektberuhigung erzielt werden. Bei Infektionen mit methicillinresistenten Staphylococcus aureus (MRSA; 62 %) und Pseudomonas aeruginosa (43 %) wurden deutlich schlechtere Remissionsraten erzielt. Das Keimspektrum umfasste überwiegend Staphylococcus aureus (28 %), Staphylococcus epidermidis (22 %), Pseudomonas aeruginosa (7 %) und Enterococcus faecalis (5 %) sowie Escherichia coli und Klebsiella oxytoca (4 %).
Schlussfolgerung Die erzielte Remissionsrate von 85 % unter Verwendung lokaler resorbierbarer Antibiotika bei vorher unter verwendeter PMMA-Kette und suffizienter systemischer Antibiose nicht erreichter Infektberuhigung ist als überdurchschnittlich zu werten. In ersten Ergebnissen konnte gezeigt werden, dass in schwierigsten Fällen der Rezidivosteomyelitis ein Behandlungsalgorithmus unter Verwendung der resorbierbaren Trägersubstanzen zu Vorteilen führt.
Abstract
Background Treatment of musculoskeletal infections principally consists of radical surgical debridement and systemic administration of antibiotics. Additional local antibiotic therapy is not yet generally established, and lacks evidence-based proof of efficacy. Nonetheless, there are a variety of practical approaches, as most specialised departments are unwilling to forego this option. The established polymethylmetacrylate (PMMA) carrier system has a number of practical disadvantages. This has led to the increased use of absorbable carrier systems, and those based on calcium sulphate have given particularly encouraging results. In this article, we present our experience with this procedure in the treatment of osteomyelitis. There is currently no standard procedure or algorithm for the use of local antibiotic carriers in the treatment of recurrent osteomyelitis.
Material and Methods Between February 2014 and May 2015, a total of 93 patients were treated with an absorbable carrier of topical antibiotics based on calcium sulphate. These patients had suffered from a recurrence of osteomyelitis that had been unsuccessfully treated by the primary implantation of a PMMA chain and systemic antibiotics. The treatment algorithm consisted of radical debridement, followed by implantation of a commercial PMMA chain. If no remission of the infection was observed, the chains were surgically removed and replaced with an absorbable carrier system and antibiotics chosen in accordance with the resistogram. Pursuant to the classification of Cierny and Mader, 10 patients were classified as type I, 5 as type II, 55 as type III and 23 as type IV. The mean follow-up period was 11 months. Two carrier systems, Osteoset® and Herafill®, were purchased from Wright Medical Technology Inc., Arlington, TN, USA and Heraeus Medical GmbH, Wehrheim, Germany, respectively. These were used as supplied for tobramycin and gentamycin. In the case of Osteoset, it was also possible to add an additional arbitrary, water-soluble antibiotic. Systemic administration of antibiotics was carried out in parallel in accordance with the resistogram.
Results The most common clinical entities were femoral (36 %) and tibial (29 %) osteitis. Vancomycin (38 %) and tobramycin (38 %) were the most frequently used topical antibiotics, followed by gentamycin (17 %), ceftriaxone (4 %), fosfomycin (2 %) and colistin (1 %). Systemic administration of antibiotics was carried out in parallel, in accordance with the resistogram. In 85 % of all patients, remission was achieved. Infections with methicillin-resistant Staphylococcus aureus (MRSA; 62 %) and Pseudomonas aeruginosa (43 %) showed significantly poorer remission rates. The bacterial spectrum was primarily composed of Staphylococcus aureus (28 %), Staphylococcus epidermidis (22 %), Pseudomonas aeruginosa (7 %) and Enterococcus faecalis (5 %), as well as Escherichia coli and Klebsiella oxytoca (4 %).
Conclusion Topical adjuvant antibiotic therapy based on an absorbable carrier system offers an expedient extension of the treatment of osteomyelitis. The remission rate of 85 % for recurrent infections encouraged the use of a therapeutic alternative for many patients. We developed an algorithm for the treatment of osteomyelitis, which includes the application of local antibiotics with different compositions and absorbable carriers. We present early results of successful treatment of patients with recurrent osteomyelitis, after futile topical therapy with non-absorbable antibiotic chains.
-
Literatur
- 1 Schneider U, Hierholzer G, Böm H-J. Knochen- und Gelenkinfektionen. Unfallchirurg 1996; 99: 789-800
- 2 Tiemann A, Braunschweig R, Hofmann G. Knocheninfektionen. Unfallchirurg 2012; 115: 480-488
- 3 Tan JS, File jr TM, Salata RA, Tan MJ. Expert Guide to Infectious Diseases. 2nd ed. Philadelphia: ACP Press; 2002: 585-604
- 4 Wang J, Calhoun JH, Mader JT. The application of bioimplants in the management of chronic osteomyelitis. Orthopedics 2002; 25: 1247-1252
- 5 Mader JT, Calhoun J, Cobos J. In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads. Antimicrob Agents Chemother 1997; 41: 415-418
- 6 van Vugt TA, Geurts J, Arts JJ. Clinical application of antimicrobial bone graft substitute in osteomyelitis treatment: a systematic review of different bone graft substitutes available in clinical treatment of osteomyelitis. Biomed Res Int 2016; 2016: 9
- 7 Armstrong DG, Findlow AH, Oyibo SO. et al. The use of absorbable antibiotic-impregnated calcium sulphate pellets in the management of diabetic foot infections. Diabet Med 2001; 18: 942-943
- 8 Klemm K, Börner M. [Treatment of chronic osteomyelitis with gentamicin PMMA chains]. Unfallchirurgie 1986; 12: 128-131
- 9 Kanellakopoulou K, Galanopoulos I, Soranoglou V. et al. Treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with a synthetic carrier of calcium sulphate (Stimulan) releasing moxifloxacin. Int J Antimicrob Agents 2009; 33: 354-359
- 10 Jerosch J, Lindner N, Fuchs S. [Results of long-term therapy of chronic, post-traumatic osteomyelitis with gentamycin PMMA chains]. Unfallchirurg 1995; 98: 338-343
- 11 Klemm K. [Gentamicin-PMMA-beads in treating bone and soft tissue infections (authorʼs transl)]. Zentralbl Chir 1979; 104: 934-942
- 12 Kelm J, Anagnostakos K, Regitz T. et al. [MRSA-infections-treatment with intraoperatively produced gentamycin-vancomycin PMMA beads]. Chirurg 2004; 75: 988-995
- 13 Blaha JD, Calhoun JH, Nelson CL. et al. Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. Clin Orthop Relat Res 1993; 295: 8-12
- 14 Adams K, Couch L, Cierny G. et al. In vitro and in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads. Clin Orthop Relat Res 1992; 297: 244-252
- 15 Walenkamp GH, Kleijn LL, de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1–12 years. Acta Orthop Scand 1998; 69: 518-522
- 16 Neut D, van de Belt H, Stokroos I. et al. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother 2001; 47: 885-891
- 17 Heybeli N, Oktar FN, Ozyazgan S. et al. Low-cost antibiotic loaded systems for developing countries. Technol Health Care 2003; 11: 207-216
- 18 Howlin RP, Brayford MJ, Webb JS. et al. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother 2015; 59: 111-120
- 19 Nelson CL, Griffin FM, Harrison BH. et al. In vitro elution characteristics of commercially and noncommercially prepared antibiotic PMMA beads. Clin Orthop Relat Res 1992; 284: 303-309
- 20 Walenkamp GH, Vree TB, van Rens TJ. Gentamicin-PMMA beads. Pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res 1986; 205: 171-183
- 21 DiCicco M, Duong T, Chu A. et al. Tobramycin and gentamycin elution analysis between two in situ polymerizable orthopedic composites. J Biomed Mater Res B Appl Biomater 2003; 65: 137-149
- 22 Rushton N. Applications of local antibiotic therapy. Eur J Surg Suppl 1997; 578: 27-30
- 23 Wilson KJ, Cierny G, Adams KR. et al. Comparative evaluation of the diffusion of tobramycin and cefotaxime out of antibiotic-impregnated polymethylmethacrylate beads. J Orthop Res 1988; 6: 279-286
- 24 Ferguson JY, Dudareva M, Riley ND. et al. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J 2014; 96-B: 829-836
- 25 Turner TM, Urban RM, Hall DJ. et al. Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res 2005; 437: 97-104
- 26 Chang W, Colangeli M, Colangeli S. et al. Adult osteomyelitis: debridement versus debridement plus Osteoset T pellets. Acta Orthop Belg 2007; 73: 238-243
- 27 Wright Medical Technology, Inc.. Osteoset® T medicated Bone Graft Substitute technical Monograph. PDF beim Autor erhältlich.
- 28 Frommelt L. [Guidelines on antimicrobial therapy in situations of periprosthetic THR infection]. Orthopade 2004; 33: 822-828
- 29 Wahl P, Livio F, Jacobi M. et al. Systemic exposure to tobramycin after local antibiotic treatment with calcium sulphate as carrier material. Arch Orthop Trauma Surg 2011; 131: 657-662
- 30 Wright Medical. Technical Monograph. 2016 Im Internet: http://www.wright.com/wp-content/uploads/2015/04/130764-4_EN.pdf Stand: 06.08.2016
- 31 Wright Medical. Technical Monograph Osteoset. 2016 Im Internet: http://documents.wright.com/Document/Get/010662 Stand: 06.08.2016
- 32 Heraeus Medical. Technical Monograph. 2016 Im Internet: https://www.heraeus.com/media/media/hme/doc_hme/products_hme/herafill_heraeus/HERAFILL_beads_G_IFU.pdf Stand: 06.08.2016
- 33 Calhoun JH, Manring MM. Adult osteomyelitis. Infect Dis Clin North Am 2005; 19: 765-786
- 34 Uckay I, Pittet D, Vaudaux P. et al. Foreign body infections due to Staphylococcus epidermidis. Ann Med 2009; 41: 109-119
- 35 Weiner RD, Viselli SJ, Fulkert KA. et al. Histology versus microbiology for accuracy in identification of osteomyelitis in the diabetic foot. J Foot Ankle Surg 2011; 50: 197-200
- 36 Gauland C. Managing lower-extremity osteomyelitis locally with surgical debridement and synthetic calcium sulfate antibiotic tablets. Adv Skin Wound Care 2011; 24: 515-523
- 37 Marczak D, Synder M, Sibiński M. et al. The use of calcium carbonate beads containing gentamicin in the second stage septic revision of total knee arthroplasty reduces reinfection rate. Knee 2016; 23: 322-326
- 38 Tsourvakas S. Local antibiotic therapy in the treatment of bone and soft tissue infections. Im Internet: http://www.intechopen.com/books/selected-topics-in-plastic-reconstructive-surgery/local-antibiotic-therapy-in-the-treatment-of-bone-and-soft-tissue-infections Stand: 06.08.2016
- 39 Kallala R, Haddad FS. Hypercalcaemia following the use of antibiotic-eluting absorbable calcium sulphate beads in revision arthroplasty for infection. Bone Joint J 2015; 97-B: 1237-1241
- 40 Strauss A. Untersuchung zur Pharmakokinetik und lokalen Verträglichkeit von Kalziumsulfat-Kugeln, getränkt mit Gentamicin und Vancomycin, nach Applikation in den Femurmarkraum von Kaninchen [Dissertation]. Gießen: Köhler; 1999
- 41 Sanders J, Mauffrey C. Long bone osteomyelitis in adults: fundamental concepts and current techniques. Orthopedics 2013; 36: 368-375
- 42 Walter G, Kemmerer M, Kappler C. et al. Treatment algorithms for chronic osteomyelitis. Dtsch Arztebl Int 2012; 109: 257-264
- 43 Smith IM, Austin OMB, Batchelor AG. The treatment of chronic osteomyelitis: A 10 year audit. JPRAS 2006; 59: 11-15
- 44 Mousset B, Benoit M, Delloye C. et al. Biodegradable implants for potential use in bone infection. Int Orthop 1997; 21: 403-408
- 45 Waterman P, Barber M, Weintrob AC. et al. The Elution of Colistimethate Sodium from Polymethylmethacrylate and Calcium Phosphate Cement Beads. AJO 2012; 41: 256-259
- 46 Cierny G, Mader JT. Adult chronic osteomyelitis. Orthopedics 1984; 7: 1557-1564
- 47 Humm G, Noor S, Bridgeman P. et al. Adjuvant treatment of chronic osteomyelitis of the tibia following exogenous trauma using OSTEOSET®-T: a review of 21 patients in a regional trauma centre. Strategies Trauma Limb Reconstr 2014; 9: 157-161