Z Orthop Unfall 2017; 155(01): 52-60
DOI: 10.1055/s-0042-113003
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Sind höhere Preise für größere Kopfdurchmesser in der Hüftendoprothetik medizinökonomisch vertretbar? Eine Analyse der Kosten und Effekte in Deutschland

Are Higher Prices for Larger Femoral Heads in Total Hip Arthroplasty Justified from the Perspective of Health Care Economics? An Analysis of Costs and Effects in Germany
R. Grunert
1   Medizintechnik, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik, Institutsteil Dresden
2   Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig AöR
,
S. Schleifenbaum
2   Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig AöR
,
R. Möbius
3   Institut für Anatomie, Universität Leipzig
,
G. Sommer
2   Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig AöR
,
D. Zajonz
2   Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig AöR
,
N. Hammer
4   Department of Anatomy, University of Otago, Dunedin, New Zealand
,
T. Prietzel
2   Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig AöR
5   Abteilung Orthopädie und Unfallchirurgie, HELIOS Klinik Blankenhain
› Author Affiliations
Further Information

Publication History

Publication Date:
07 October 2016 (online)

Zusammenfassung

Hintergrund: In der Hüftendoprothetik stellte der Kopfdurchmesser bisher keinen Parameter dar, dessen Wiederherstellung bei der Rekonstruktion von Biomechanik und Gelenkgeometrie angestrebt wird. Neben kontroversen Diskussionen über Vor- und Nachteile größerer Köpfe scheinen deren meist höhere Kosten eine wesentliche Ursache für einen bisher begrenzten Einsatz darzustellen. Das Ziel dieser Studie bestand darin, die Preisstruktur von Endoprothesenköpfen im Vergleich zu anderen Hüftendoprothesenkomponenten zu analysieren. Darüber hinaus sollte die Verteilung realisierbarer Kopfdurchmesser an einem großen Patientenkollektiv als Basis für eine Mischkalkulation ermittelt werden.

Material und Methoden: Von 2 großen deutschen Endoprothesenherstellern wurden die Relativpreise verschiedener Endoprothesenkomponenten (Pfannen, Inlays, Schäfte und Köpfe) unter besonderer Berücksichtigung der verschiedenen Größen und Varianten einer Serie erhoben und analysiert. Ein großes mit Hüftendoprothesen versorgtes Patientenkollektiv wurde bez. der implantierten Pfannendurchmesser und der somit theoretisch realisierbaren Kopfdurchmesser ausgewertet.

Ergebnisse: Die Analyse der Preisbildung bei Hüftendoprothesenkomponenten von 2 Herstellern ergab jeweils identische Preise für Pfannen-, Inlay- und Schaftimplantatgrößen einer Serie. Im Gegensatz dazu lagen die Preise für Endoprothesenköpfe mit 36–44 mm Durchmesser in Relation zu 28-mm-Köpfen um 11–50 % höher, während identische Preise die Ausnahme darstellten. Die Verteilung der Kopfdurchmesser bei 2719 HTEP-Implantationen zeigte erhebliche Abweichungen zwischen den real eingesetzten und den theoretisch möglichen Köpfen.

Schlussfolgerungen: Angesichts der nachgewiesenen Vorteile und der lösbaren Nachteile größerer Köpfe in der Hüftendoprothetik sollte die gegenwärtige Praxis der Preisbildung mit höheren Preisen für größere Durchmesser korrigiert und der bewährten Preisbildung aller anderen Komponenten mit identischen Preisen für alle Implantate einer Serie angeglichen werden. Damit wird es zukünftig möglich sein, bei Hüftendoprothesenimplantationen im Rahmen der Rekonstruktion von Biomechanik und Gelenkgeometrie neben den Parametern Beinlänge, femorales Offset und Antetorsion des Schenkelhalses auch die annähernde Wiederherstellung des Hüftkopfdurchmessers anzustreben, um die Behandlungsergebnisse zu optimieren.

Abstract

Background: In total hip arthroplasty (THA), femoral head diameter has not been regarded as a key parameter which should be restored when reconstructing joint biomechanics and geometry. Apart from the controversial discussion on the advantages and disadvantages of using larger diameter heads, their higher cost is another important reason that they have only been used to a limited extent. The goal of this study was to analyse the price structure of prosthetic heads in comparison to other components used in THA. A large group of patients with hip endoprostheses were evaluated with respect to the implanted socket diameter and thus the theoretically attainable head diameter.

Materials and Methods: The relative prices of various THA components (cups, inserts, stems and ball heads) distributed by two leading German manufacturers were determined and analysed. Special attention was paid to different sizes and varieties in a series of components. A large patient population treated with THA was evaluated with respect to the implanted cup diameter and therefore the theoretically attainable head diameter.

Results: The pricing analysis of the THA components of two manufacturers showed identical prices for cups, inserts and stems in a series. In contrast to this, the prices for prosthetic heads with a diameter of 36–44 mm were 11–50 % higher than for 28 mm heads. Identical prices for larger heads were the exception. The distribution of the head diameter in 2719 THA cases showed significant differences between the actually implanted and the theoretically attainable heads.

Conclusion: There are proven advantages in using larger diameter ball heads in THA and the remaining problems can be solved. It is therefore desirable to correct the current pricing practice of charging higher prices for larger components. Instead, identical prices should be charged for all head diameters in a series, as is currently established practice for all other THA components. Thus when reconstructing biomechanics and joint geometry in THA, it should be possible to recover not only leg length, femoral offset and antetorsion of the femoral neck, but also to approximately restore the diameter of the femoral head and thereby optimise the functional outcome.

 
  • Literatur

  • 1 Girard J, Lavigne M, Vendittoli P. et al. Biomechanical reconstruction of the hip: a randomised study comparing total hip resurfacing and total hip arthroplasty. J Bone Joint Surg Br 2006; 88: 721-726
  • 2 Girard J. Femoral head diameter considerations for primary total hip arthroplasty. 2014 Instructional Course Lectures (SoFCOT). Orthop Traumatol Surg Res 2015; 101 (01) Suppl. S25-S29
  • 3 Müller M, Abdel MP, Wassilew GI. et al. Do post-operative changes of neck-shaft angle and femoral component anteversion have an effect on clinical outcome following uncemented total hip arthroplasty?. Bone Joint J 2015; 97-B: 1615-1622
  • 4 Ewerbeck V, Wentzensen A, Grützner PA, Holz F, Krämer KL, Pfeil J, Sabo D. Hrsg. Standardverfahren in der operativen Orthopädie und Unfallchirurgie. 4. Aufl. Stuttgart: Thieme; 2014
  • 5 Milner GR, Boldsen JL. Humeral and femoral head diameters in recent white American skeletons. J Forensic Sci 2012; 57: 35-40
  • 6 Howie DW, Holubowycz OT, Middleton R. Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 2012; 94: 1095-1102
  • 7 Bistolfi A, Crova M, Rosso F. et al. Dislocation rate after hip arthroplasty within the first postoperative year: 36 mm versus 28 mm femoral heads. Hip Int 2011; 21: 559-564
  • 8 Lombardi jr. AV, Skeels MD, Berend KR. et al. Do large heads enhance stability and restore native anatomy in primary total hip arthroplasty?. Clin Orthop Relat Res 2011; 469: 1547-1553
  • 9 Banerjee S, Pivec R, Issa K. et al. Large-diameter femoral heads in total hip arthroplasty: an evidence-based review. Am J Orthop (Belle Mead NJ) 2014; 43: 506-512
  • 10 Charnley J, Kamangar A, Longfield MD. The optimum size of prosthetic heads in relation to the wear of plastic sockets in total replacement of the hip. Med Biol Eng 1969; 7: 31-39
  • 11 Charnley J. Low friction arthroplasty of the hip: theory and practice: Chapter 19: Post-operative Dislocation. Berlin, Heidelberg, New York: Springer; 1979
  • 12 Etienne A, Cupic Z, Charnley J. Postoperative dislocation after Charnley low-friction arthroplasty. Clin Orthop Relat Res 1978; 132: 19-23
  • 13 Berry DJ, von Knoch M, Schleck CD. et al. Effect of femoral head diameter and operative approach on risk of dislocation after primary total hip arthroplasty. J Bone Joint Surg Am 2005; 87: 2456-2463
  • 14 Malchau H, Herberts P, Eisler T. et al. The Swedish Total Hip Replacemant Register. J Bone Joint Surg Am 2002; 84-A (Suppl. 02) 2-20
  • 15 Kohn D, Rühmann O, Wirth CJ. Die Verrenkung der Hüfttotalendoprothese unter besonderer Beachtung verschiedener Zugangswege. Z Orthop Unfall 1997; 135: 40-44
  • 16 Dobzyniak M, Fehring TK, Odum S. Early failure in total hip arthroplasty. Clin Orthop Relat Res 2006; 447: 76-78
  • 17 Morrey BF. Instability after total hip arthroplasty. Orthop Clin North Am 1992; 23: 237-248
  • 18 Sanchez-Sotelo J, Berry DJ. Epidemiology of instability after total hip replacement. Orthop Clin North Am 2001; 32: 543-552
  • 19 Phillips CB, Barrett JA, Losina E. et al. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg Am 2003; 85-A: 20-26
  • 20 Meek RM, Allan DB, McPhillips G. et al. Late dislocation after total hip arthroplasty. Clin Med Res 2008; 6: 17-23
  • 21 Perka C, Haschke F, Tohtz S. [Dislocation after total hip arthroplasty]. Z Orthop Unfall 2012; 150: e89-103
  • 22 Prietzel T, Hammer N, Schleifenbaum S. et al. [The impact of capsular repair on the dislocation rate after primary total hip arthroplasty: a retrospective analysis of 1972 cases]. Z Orthop Unfall 2014; 152: 130-143
  • 23 Sanchez-Sotelo J, Haidukewych GJ, Boberg CJ. Hospital cost of dislocation after primary total hip arthroplasty. J Bone Joint Surg Am 2006; 88: 290-294
  • 24 Pellicci PM, Bostrom M, Poss R. Posterior approach to total hip replacement using enhanced posterior soft tissue repair. Clin Orthop Relat Res 1998; 355: 224-228
  • 25 Bottner F, Pellicci PM. Review: posterior soft tissue repair in primary total hip arthroplasty. HSS J 2006; 2: 7-11
  • 26 Kwon MS, Kuskowski M, Mulhall KJ. et al. Does surgical approach affect total hip arthroplasty dislocation rates?. Clin Orthop Relat Res 2006; 447: 34-38
  • 27 Hummel MT, Malkani AL, Yakkanti MR. et al. Decreased dislocation after revision total hip arthroplasty using larger femoral head size and posterior capsular repair. J Arthroplasty 2009; 24: 73-76
  • 28 Lombardi jr. AV, Berend KR, Morris MJ. et al. Large-diameter metal-on-metal total hip arthroplasty: dislocation infrequent but survivorship poor. Clin Orthop Relat Res 2015; 473: 509-520
  • 29 Malkani AL, Ong KL, Lau E. et al. Early- and late-term dislocation risk after primary hip arthroplasty in the Medicare population. J Arthroplasty 2010; 25: 21-25
  • 30 Amstutz HC, Le Duff MJ, Beaulé PE. Prevention and treatment of dislocation after total hip replacement using large diameter balls. Clin Orthop Relat Res 2004; 429: 108-116
  • 31 Conroy JL, Whitehouse SL, Graves SE. et al. Risk factors for revision for early dislocation in total hip arthroplasty. J Arthroplasty 2008; 23: 867-872
  • 32 Garbuz DS, Masri BA, Duncan CP. et al. The Frank Stinchfield Award: Dislocation in revision THA: do large heads (36 and 40 mm) result in reduced dislocation rates in a randomized clinical trial?. Clin Orthop Relat Res 2012; 470: 351-356
  • 33 Peters CL, McPherson E, Jackson JD. et al. Reduction in early dislocation rate with large-diameter femoral heads in primary total hip arthroplasty. J Arthroplasty 2007; 22: 140-144
  • 34 Stroh DA, Issa K, Johnson AJ. et al. Reduced dislocation rates and excellent functional outcomes with large-diameter femoral heads. J Arthroplasty 2013; 28: 1415-1420
  • 35 Plate JF, Seyler TM, Stroh DA. et al. Risk of dislocation using large- vs. small-diameter femoral heads in total hip arthroplasty. BMC Res Notes 2012; 5: 553
  • 36 Beaule P, Roussignol X, Schmalzried T. et al. Tripolar arthroplasty for recurrent total hip prosthesis dislocation. Rev Chir Orthop Reparatrice Appar Mot 2003; 89: 242-249
  • 37 van Sikes C, Lai LP, Schreiber M. et al. Instability after total hip arthroplasty: treatment with large femoral heads vs. constrained liners. J Arthroplasty 2008; 23: 59-63
  • 38 Della Valle AG, Padgett DE, Salvati EA. Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 2005; 13: 455-462
  • 39 Burroughs BR, Hallstrom B, Golladay GJ. et al. Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: an in vitro study. J Arthroplasty 2005; 20: 11-19
  • 40 Hammerberg EM, Wan Z, Dastane M. et al. Wear and range of motion of different femoral head sizes. J Arthroplasty 2010; 25: 839-843
  • 41 Chandler DR, Glousman R, Hull D. et al. Prosthetic hip range of motion and impingement. The effects of head and neck geometry. Clin Orthop Relat Res 1982; 166: 284-291
  • 42 Padgett DE, Lipman J, Robie B. et al. Influence of total hip design on dislocation: a computer model and clinical analysis. Clin Orthop Relat Res 2006; 447: 48-52
  • 43 Rodriguez JA, Rathod PA. Large diameter heads: is bigger always better?. J Bone Joint Surg Br 2012; 94: 52-54
  • 44 DʼAngelo F, Murena L, Zatti G. et al. The unstable total hip replacement. Indian J Orthop 2008; 42: 252-259
  • 45 Crowninshield RD, Maloney WJ, Wentz DH. et al. Biomechanics of large femoral heads: what they do and donʼt do. Clin Orthop Relat Res 2004; 429: 102-107
  • 46 Prietzel T, Richter K, Pilz D. et al. [The stabilizing effect of atmospheric pressure (AP) on hip joint subject to traction force–an experimental study]. Z Orthop Unfall 2007; 145: 468-475
  • 47 Bartz RL, Nobel PC, Kadakia NR. et al. The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am 2000; 82: 1300-1307
  • 48 Zajonz D, Philipp H, Schleifenbaum S. et al. [Larger heads compensate for an increased risk of THA dislocation in high-risk patients]. Orthopade 2015; 44: 381-391
  • 49 Marchetti E, Krantz N, Berton C. et al. Component impingement in total hip arthroplasty: frequency and risk factors. A continuous retrieval analysis series of 416 cup. Orthop Traumatol Surg Res 2011; 97: 127-133
  • 50 Shon WY, Baldini T, Peterson MG. et al. Impingement in total hip arthroplasty a study of retrieved acetabular components. J Arthroplasty 2005; 20: 427-435
  • 51 Yamaguchi M, Akisue T, Bauer TW. et al. The spatial location of impingement in total hip arthroplasty. J Arthroplasty 2000; 15: 305-313
  • 52 Langton DJ, Joyce TJ, Jameson SS. et al. Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg Br 2011; 93: 164-171
  • 53 Prietzel T, Hammer N, Schleifenbaum S. et al. On the permanent hip-stabilizing effect of atmospheric pressure. J Biomech 2014; 47: 2660-2665
  • 54 Prietzel T, Drummer N, Pilz D. et al. [Webers experiments regarding the stabilising effect of atmospheric pressure on the hip joint – a historical and experimental retrospect]. Z Orthop Unfall 2008; 146: 644-650
  • 55 Elkins JM, Stroud NJ, Rudert MJ. et al. The capsuleʼs contribution to total hip construct stability–a finite element analysis. J Orthop Res 2011; 29: 1642-1648
  • 56 Elkins JM, Callaghan JJ, Brown TD. The 2014 Frank Stinchfield Award: The ‘landing zone’ for wear and stability in total hip arthroplasty is smaller than we thought: a computational analysis. Clin Orthop Relat Res 2015; 473: 441-452
  • 57 Stewart KJ, Pedersen DR, Callaghan JJ. et al. Implementing capsule representation in a total hip dislocation finite element model. Iowa Orthop J 2004; 24: 1-8
  • 58 Clarke IC, Gustafson A, Jung H. et al. Hip-simulator ranking of polyethylene wear: comparisons between ceramic heads of different sizes. Acta Orthop Scand 1996; 67: 128-132
  • 59 Livermore J, Ilstrup D, Morrey B. Effect of femoral head size on wear of the polyethylene acetabular component. J Bone Joint Surg Am 1990; 72: 518-528
  • 60 Bishop NE, Hothan A, Morlock MM. High friction moments in large hard-on-hard hip replacement bearings in conditions of poor lubrication. J Orthop Res 2013; 31: 807-813
  • 61 Morlock M, Bishop N, Perka C. Is Bigger Really Better? Bone & Joint. Orthopaedic Proceedings 2012; 94-B (Suppl. XL) 115
  • 62 Johnson AJ, Loving L, Herrera L. et al. Short-term wear evaluation of thin acetabular liners on 36-mm femoral heads. Clin Orthop Relat Res 2014; 472: 624-629
  • 63 Stuchin SA. Anatomic diameter femoral heads in total hip arthroplasty: a preliminary report. J Bone Joint Surg Am 2008; 90 (Suppl. 03) 52-56
  • 64 Kabo JM, Gebhard JS, Loren G. et al. In vivo wear of polyethylene acetabular components. J Bone Joint Surg Br 1993; 75: 254-258
  • 65 Eggli S, zʼBrun S, Gerber C. et al. Comparison of polyethylene wear with femoral heads of 22 mm and 32 mm. A prospective, randomised study. J Bone Joint Surg Br 2002; 84: 447-451
  • 66 Cross MB, Nam D, Mayman DJ. Ideal femoral head size in total hip arthroplasty balances stability and volumetric wear. HSS J 2012; 8: 270-274
  • 67 Digas G, Kärrholm J, Thanner J. et al. The Otto Aufranc Award. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis. Clin Orthop Relat Res 2004; 429: 6-16
  • 68 Kesteris U, Ilchmann T, Wingstrand H. et al. Polyethylene wear in Scanhip arthroplasty with a 22 or 32 mm head: 62 matched patients followed for 7–9 years. Acta Orthop Scand 1996; 67: 125-127
  • 69 Lachiewicz PF, Heckman DS, Soileau ES. et al. Femoral head size and wear of highly cross-linked polyethylene at 5 to 8 years. Clin Orthop Relat Res 2009; 467: 3290-3296
  • 70 Murray WR. Acetabular salvage in revision total hip arthroplasty using the bipolar prosthesis. Clin Orthop Relat Res 1990; 251: 92-99
  • 71 Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am 1992; 74: 849-863
  • 72 Lachiewicz PF, Soileau ES, Martell JM. Wear and osteolysis of highly crosslinked polyethylene at 10 to 14 years: the effect of femoral head size. Clin Orthop Relat Res 2016; 474: 365-371
  • 73 Bolland B, Culliford DJ, Langton DJ. et al. High failure rates with a large-diameter hybrid metal-on-metal total hip replacement: clinical, radiological and retrieval analysis. J Bone Joint Surg Br 2011; 93: 608-615
  • 74 Dyrkacz RM, Brandt JM, Ojo OA. et al. The influence of head size on corrosion and fretting behaviour at the head-neck interface of artificial hip joints. J Arthroplasty 2013; 28: 1036-1040
  • 75 Langton DJ, Jameson SS, Joyce TJ. et al. Accelerating failure rate of the ASR total hip replacement. J Bone Joint Surg Br 2011; 93: 1011-1016
  • 76 Lombardi jr. AV, Berend KR, Adams JB. et al. Adverse reactions to metal on metal are not exclusive to large heads in total hip arthroplasty. Clin Orthop Relat Res 2016; 474: 432-440
  • 77 Mihalko WM, Wimmer MA, Pacione CA. et al. How have alternative bearings and modularity affected revision rates in total hip arthroplasty?. Clin Orthop Relat Res 2014; 472: 3747-3758
  • 78 Bonnaig NS, Freiberg RA, Freiberg AA. Total hip arthroplasty with ceramic-on-ceramic bearing failure from third-body wear. Orthopedics 2011; 34: 132
  • 79 McDonnell SM, Boyce G, Baré J. et al. The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. Bone Joint J 2013; 95-B: 160-165
  • 80 Tarasevicius S, Kesteris U, Robertsson O. et al. Femoral head diameter affects the revision rate in total hip arthroplasty: an analysis of 1,720 hip replacements with 9–21 years of follow-up. Acta Orthop 2006; 77: 706-709
  • 81 Bystrom S, Espehaug B, Furnes O. et al. Femoral head size is a risk factor for total hip luxation: a study of 42,987 primary hip arthroplasties from the Norwegian Arthroplasty Register. Acta Orthop Scand 2003; 74: 514-524
  • 82 Bin Nasser A, Beaulé PE, OʼNeill M. et al. Incidence of groin pain after metal-on-metal hip resurfacing. Clin Orthop Relat Res 2010; 468: 392-399
  • 83 Bartelt RB, Yuan BJ, Trousdale RT. et al. The prevalence of groin pain after metal-on-metal total hip arthroplasty and total hip resurfacing. Clin Orthop Relat Res 2010; 468: 2346-2356
  • 84 Alberton GM, High WA, Morrey BF. Dislocation after revision total hip arthroplasty: an analysis of risk factors and treatment options. J Bone Joint Surg Am 2002; 84-A: 1788-1792
  • 85 Werner BC, Brown TE. Instability after total hip arthroplasty. World J Orthop 2012; 3: 122-130
  • 86 Hailer NP, Weiss RJ. Stark Aet al. Dual-mobility cups for revision due to instability are associated with a low rate of re-revisions due to dislocation: 228 patients from the Swedish Hip Arthroplasty Register. Acta Orthop 2012; 83: 566-571