Subscribe to RSS
DOI: 10.1055/s-0042-113342
Atmosphären auf zukünftigen bemannten Mond- und Marsmissionen
Medizinische Besonderheiten und Risiken der verschiedenen AtmosphärenAtmospheres on future manned missions to the moon or Mars – medical characteristics and risks of the different atmospheresPublication History
Publication Date:
24 August 2016 (online)
Auf zukünftigen Missionen zum Mond und Mars werden Explorationsatmosphären zum Einsatz kommen. Diese unnatürlichen Atmosphären setzen sich aus einer deutlich hypobaren aber nur milden hypoxischen Komponente zusammen. Notwendig werden diese Atmosphären, um den Astronauten das sehr schnelle und wiederholte Wechseln zwischen der Oberflächenstation und dem Raumanzug und damit eine effektive und intensive Arbeit außerhalb der Station zu ermöglichen. Medizinische Besonderheiten und Risiken der verschiedenen Atmosphären, wie akute Höhenkrankheit und hypobare Dekompressionserkrankung, während eines bemannten Fluges zu Mond oder Mars werden in diesem Übersichtsartikel diskutiert.
On future manned missions to the moon or Mars so called exploration atmospheres will be used. These unnatural atmospheres are composed of a clearly hypobaric but only mild hypoxic component. The application of this kind of atmospheres will be necessary to allow the astronaut to perform very rapid and repeated switching between the atmospheres of the station on the surface and the space suit to establish efficient work outside the station. Medical characteristics and risks of the different atmospheres on a manned mission to the moon or Mars, such as acute mountain sickness and hypobaric decompression sickness, are discussed in this review article.
FÜS, Faktor für Gewebeübersättigung;
PG Partialdruck im Gewebe;
PB Barometrischer Druck
-
Literatur
- 1 Halsey LG, Stroud MA. Could Scott have survived with today’s physiological knowledge?. Curr Biol 2011; 21: R457-461
- 2 Berghold F, Brugger H, Burtscher M, Domey W, Durrer B, Fischer R, Paal P, Schaffert W, Schobersberger W (Hrsg.) Alpin- und Höhemedizin. Wien: Springer; 2015
- 3 Law J, Van Baalen M, Foy M et al. Relationship between carbon dioxide levels and reported headaches on the international space station. J Occup Environ Med 2014; 56: 477-483
- 4 Marshall-Bowman K, Barratt MR, Gibson CR. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: An emerging understanding. Acta Astronautica 2013; 87: 77-87
- 5 Norcross J, Norsk P, Law J et al. Effects of the 8 psia / 32 % O2 Atmosphere on the Human in the Spacefligth Environment. 2013; Im Internet: https://ston.jsc.nasa.gov/collections/trs/_techrep/TM-2013-217377.pdf
- 6 Drake BG, Watts KD. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2. NASA Technical Reports Server 2016;
- 7 Beall CM. Human Evolution at High Altitude. In: Swenson ER, Bärtsch P. (Eds.) High Altitude. New York: Springer; 2014
- 8 Fenn WO, Rahn H, Otis AB. A theoretical study of the composition of the alveolar air at altitude. Am J Physiol 1946; 146: 637-653
- 9 Davis JR, Johnson R, Stepanek J, Fogarty JA. Fundamentals of Aerospace Medicine. 4th Ed. Philadelphia: Lippincott Williams & Wilkins; 2008
- 10 Piantados CA. Mankind Beyond Earth. Columbia University Press. 2013;
- 11 Brubakk AO, Ross JA, Thom SR. Saturation diving; physiology and pathophysiology. Compr Physiol 2014; 4: 1229-1272
- 12 Conkin J, Feiveson AH, Gernhardt ML at al. Designing an exploration atmosphere prebreathe protocol. Im Internet: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012830.pdf
- 13 Mader TH, Gibson CR, Pass AF et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 2011; 118: 2058-2069
- 14 Wiener TC. Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in space. Aviat Space Environ Med 2012; 83: 64-66
- 15 Otto C, Norsk P, Shelhamer M, Davis J. The Visual Impairment Intracranial Pressure Syndrome in Long Duration NASA Astronauts: An Integrated Approach. NASA Technical Reports Server 2015;
- 16 Swenson ER, Bärtsch P (Eds.). High Altitude. New York: Springer; 2014
- 17 Ainslie PN, Wilson MH, Imray CH. Cerebral Circulation and Brain. In: Swenson ER, Bärtsch P, (Eds.) High Altitude. New York: Springer; 2014
- 18 Norcross JR, Conkin J, Wessel JH et al. Evidence Report: Risk of Hypobaric Hypoxia from the Exploration Atmosphere. Im Internet: https://humanre searchroadmap.nasa.gov/evidence/other/ExpAtm.pdf
- 19 Basnyat B, Lemaster J, Litch JA. Everest or bust: a cross sectional, epidemiological study of acute mountain sickness at 4243 meters in the Himalayas. Aviat Space Environ Med 1999; 70: 867-873
- 20 Schneider M, Bernasch D, Weymann J et al. Acute mountain sickness: influence of susceptibility, preexposure, and ascent rate. Med Sci Sports Exerc 2002; 34: 1886-1891
- 21 Barratt MR, Pool SL (Eds.). Principles of Clinical Medicine for Space Flight. New York: Springer; 2008
- 22 Loeppky JA, Roach RC, Selland MA et al. Effects of prolonged head-down bed rest on physiological responses to moderate hypoxia. Aviat Space Environ Med 1993; 64: 275-286
- 23 Conkin J, Wessel 3rd JH. Critique of the equivalent air altitude model. Aviat Space Environ Med 2008; 79: 975-982
- 24 Webb JT, Pilmanis AA, O’Connor RB. An abrupt zero-preoxygenation altitude threshold for decompression sickness symptoms. Aviat Space Environ Med 1998; 69: 335-340
- 25 Tikuisis P, Gerth WA, Decompression theory. In: Brubakk A, Neuman T. Bennett and Elliotts’ Physiology and Medicine of Diving. 5th Ed. Oxford: Elsevier; 2003: 419-454
- 26 Foster PP, Butler BD. Decompression to altitude: assumptions, experimental evidence, and future directions. J Appl Physiol (1985) 2009; 106: 678-690