Der Nuklearmediziner 2016; 39(04): 245-258
DOI: 10.1055/s-0042-113843
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Nuklearmedizinische Differenzialdiagnostik der Parkinson-Syndrome: Update 2016

Differential Diagnosis of Parkinsonism with Radionuclide Imaging Techniques: Update 2016
P. T. Meyer
1   Klinik für Nuklearmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg
,
L. Frings
1   Klinik für Nuklearmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg
2   Zentrum für Geriatrie und Gerontologie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg
,
S. Hellwig
3   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. Dezember 2016 (online)

Zusammenfassung

In der neuen S3-Leitlinie zur Diagnostik und Therapie des idiopathischen Parkinson-Syndroms (Morbus Parkinson, PD) werden dezidierte Empfehlungen zur Differenzialdiagnose des unklaren neurodegenerativen Parkinson-Syndroms (PS) mit nuklearmedizinischen Verfahren gegeben. In der vorliegenden Übersichtsarbeit wird die diagnostische Wertigkeit der betreffenden Verfahren anhand der aktuellen Literaturlage vorgestellt und im Kontext der Leitlinienempfehlung bewertet. Die [123I]FP-CIT-SPECT der präsynaptischen Dopamintransporter-Verfügbarkeit und die [123I]IBZM-SPECT der vorrangig postsynaptischen Dopamin-D2/D3-Rezeptor-Verfügbarkeit erlauben keine ausreichende diagnostische Trennung zwischen PD und den sog. atypischen Parkinson-Syndromen (APS). Sie sollten somit für diese Fragestellung nicht eingesetzt werden. Die Szintigrafie der sympathischen myokardialen Innervation erlaubt eine Trennung zwischen PD und der Multisystematrophie (MSA) mit moderater diagnostischer Genauigkeit und kann somit für diese Fragestellung eingesetzt werden. Eine sehr genaue Differenzierung zwischen PD und APS bzw. den APS untereinander ermöglicht hingegen die [18F]FDG-PET, die entsprechend der aktuellen Leitlinie zur bestmöglichen differenzialdiagnostischen Zuordnung eines PS eingesetzt werden kann. Zudem besitzt die [18F]FDG-PET entsprechend aktueller Studien wahrscheinlich eine hohe prognostische Aussagekraft bez. des Gesamtüberlebens von Patienten mit einem PS bzw. der Entwicklung einer kognitiven Störung bei PD.

Abstract

Recent German S3 guidelines for the diagnosis and treatment of Parkinson’s disease (PD) provide recommendations for the differential diagnosis of neurodegenerative parkinsonian syndromes (PS) of uncertain etiology by radionuclide imaging techniques. In the present review, we will critically discuss the diagnostic value of these methods with reference to the current literature and in the context of the recommendation of the recent guidelines. [123I]FP-CIT SPECT of presynaptic dopamine transporter availability and [123I]IBZM SPECT of predominantly postsynaptic dopamine D2/D3 receptor availability do not allow for a sufficient differentiation between PD and the so-called atypical PS (APS). Thus, they should not be applied for this purpose. [123I]MIBG scintigraphy of sympathetic myocardial innervation permits a differentiation between PD and multiple system atrophy (MSA) with moderate diagnostic accuracy. Thus, it might be applied for his purpose. In contrast, [18F]FDG PET achieves a very accurate differentiation between PD and APS as well as between different APS variants. Thus, according to the recent guidelines, [18F]FDG PET might be applied to achieve optimal differential diagnosis of PS. Furthermore, recent publications indicate a probable prognostic value of [18F]FDG PET concerning overall survival of PS patients and development of cognitive impairments in PD patients.

 
  • Literatur

  • 1 AWMF . http://www.awmf.org/leitlinien/detail/ll/030-010.html [letzter Zugriff am 10.10.2016]
  • 2 Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson disease. J Neurol Sci 2010; 289: 18-22
  • 3 Aerts MB, Esselink RA, Abdo WF et al. Ancillary investigations to diagnose parkinsonism: a prospective clinical study. J Neurol 2015; 262: 346-356
  • 4 Amtage F, Hellwig S, Kreft A et al. Neuronal correlates of clinical asymmetry in progressive supranuclear palsy. Clin Nucl Med 2014; 39: 319-325
  • 5 Amtage F, Hellwig S, Meyer PT. Klinische Differenzialdiagnose des Parkinson-Syndroms. Der Nuklearmediziner 2012; 35: 1-9
  • 6 Antonini A, Benti R, De Notaris R et al. 123I-Ioflupane/SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Neurol Sci 2003; 24: 149-150
  • 7 Baba T, Kikuchi A, Hirayama K et al. Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: a 3 year longitudinal study. Brain 2012; 135: 161-169
  • 8 Bohnen NI, Koeppe RA, Minoshima S et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 2011; 52: 848-855
  • 9 Braune S. The role of cardiac metaiodobenzylguanidine uptake in the differential diagnosis of parkinsonian syndromes. Clin Auton Res 2001; 11: 351-355
  • 10 Buter TC, van den Hout A, Matthews FE et al. Dementia and survival in Parkinson disease: a 12-year population study. Neurology 2008; 70: 1017-1022
  • 11 Ceravolo R, Rossi C, Cilia R et al. Evidence of delayed nigrostriatal dysfunction in corticobasal syndrome: a SPECT follow-up study. Parkinsonism Relat Disord 2013; 19: 557-559
  • 12 Cilia R, Rossi C, Frosini D et al. Dopamine Transporter SPECT Imaging in Corticobasal Syndrome. PLoS One 2011; 6: e18301
  • 13 Eckert T, Barnes A, Dhawan V et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005; 26: 912-921
  • 14 Eckert T, Van Laere K, Tang C et al Quantification of Parkinson’s disease-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging 2007; 34: 496-501
  • 15 Garcia-Garcia D, Clavero P, Gasca Salas C et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging 2012; 39: 1767-1777
  • 16 Garraux G, Phillips C, Schrouff J et al. Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes. Neuroimage Clin 2013; 2: 883-893
  • 17 Garraux G, Salmon E, Peigneux P et al. Voxel-based distribution of metabolic impairment in corticobasal degeneration. Mov Disord 2000; 15: 894-904
  • 18 Gasca-Salas C, Clavero P, García-García D et al. Significance of visual hallucinations and cerebral hypometabolism in the risk of dementia in Parkinson’s disease patients with mild cognitive impairment. Hum Brain Mapp 2016; 37: 968-977
  • 19 González-Redondo R, García-García D, Clavero P et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain 2014; 137: 2356-2367
  • 20 Hammesfahr S, Antke C, Mamlins E et al. FP-CIT- and IBZM-SPECT in Corticobasal Syndrome: Results from a Clinical Follow-Up Study. Neurodegener Dis 2016 [Epub ahead of print]
  • 21 Hellwig S, Amtage F, Kreft A et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 2012; 79: 1314-1322
  • 23 Hellwig S, Frings L, Amtage F et al. 18F-FDG PET Is an Early Predictor of Overall Survival in Suspected Atypical Parkinsonism. J Nucl Med 2015; 56: 1541-1546
  • 24 Hellwig S, Kreft A, Amtage F et al. 123I-iodobenzamide SPECT is not an independent predictor of dopaminergic responsiveness in patients with suspected atypical parkinsonian syndromes. J Nucl Med 2013; 54: 2081-2086
  • 25 Hierholzer J, Cordes M, Venz S et al. Loss of dopamine-D2 receptor binding sites in Parkinsonian plus syndromes. J Nucl Med 1998; 39: 954-960
  • 26 Hosaka K, Ishii K, Sakamoto S et al. Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 2002; 199: 67-71
  • 27 Hosokai Y, Nishio Y, Hirayama K et al. Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Mov Disord 2009; 24: 854-862
  • 28 Huang C, Mattis P, Perrine K et al. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology 2008; 70: 1470-1477
  • 29 Ishibashi K, Saito Y, Murayama S. Validation of cardiac (123)I-MIBG scintigraphy in patients with Parkinson’s disease who were diagnosed with dopamine PET. Eur J Nucl Med Mol Imaging 2010; 37: 3-11
  • 30 Jokinen P, Scheinin N, Aalto S et al. [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson’s disease with and without dementia. Parkinsonism Relat Disord 2010; 16: 666-670
  • 31 Juh R, Kim J, Moon D et al. Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J Radiol 2004; 51: 223-233
  • 32 Juh R, Pae CU, Kim TS et al. Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis. Neurosci Lett 2005; 383: 22-27
  • 33 Juh R, Pae CU, Lee CU et al. Voxel based comparison of glucose metabolism in the differential diagnosis of the multiple system atrophy using statistical parametric mapping. Neurosci Res 2005; 52: 211-219
  • 34 Kahraman D, Eggers C, Schicha H et al. Visual assessment of dopaminergic degeneration pattern in 123I-FP-CIT SPECT differentiates patients with atypical parkinsonian syndromes and idiopathic Parkinson’s disease. J Neurol 2012; 259: 251-260
  • 35 Kempster PA, Williams DR, Selikhova M et al. Patterns of levodopa response in Parkinson’s disease: a clinico-pathological study. Brain 2007; 130: 2123-2128
  • 36 Kim HW, Kim JS, Oh M et al. Different loss of dopamine transporter according to subtype of multiple system atrophy. Eur J Nucl Med Mol Imaging 2016; 43: 517-525
  • 37 Kim YJ, Ichise M, Ballinger JR et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002; 17: 303-312
  • 38 Klaffke S, Kuhn AA, Plotkin M et al Dopamine transporters, D2 receptors, and glucose metabolism in corticobasal degeneration. Mov Disord 2006; 21: 1724-1727
  • 39 Knudsen GM, Karlsborg M, Thomsen G et al. Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2004; 31: 1631-1638
  • 40 Koch W, Hamann C, Radau PE et al. Does combined imaging of the pre- and postsynaptic dopaminergic system increase the diagnostic accuracy in the differential diagnosis of parkinsonism?. Eur J Nucl Med Mol Imaging 2007; 34: 1265-1273
  • 41 Kouri N, Whitwell JL, Josephs KA et al. Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol 2011; 7: 263-272
  • 42 Kurata T, Kametaka S, Ohta Y et al. PSP as distinguished from CBD, MSA-P and PD by clinical and imaging differences at an early stage. Intern Med 2011; 50: 2775-2781
  • 43 Levin J, Kurz A, Arzberger T et al. The Differential Diagnosis and Treatment of Atypical Parkinsonism. Dtsch Arztebl Int 2016; 113: 61-69
  • 44 Ling H, O’Sullivan SS, Holton JL et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010; 133: 2045-2057
  • 45 Lippa CF, Duda JE, Grossman M et al. DLB/PDD Working Group . DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007; 68: 812-819
  • 46 Litvan I, Aarsland D, Adler CH et al. MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord 2011; 26: 1814-1824
  • 47 Lyoo CH, Jeong Y, Ryu YH et al. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy. Brain 2008; 131: 438-446
  • 48 Lyoo CH, Jeong Y, Ryu YH et al. Cerebral glucose metabolism of Parkinson’s disease patients with mild cognitive impairment. Eur Neurol 2010; 64: 65-73
  • 49 Mamlins E, Hammesfahr S, Beu M et al. Parkinson und atypischen Parkinson-Syndromen durch logische Kombination von IBZM, MIBG und FP-CIT – Validierung der Methode. Vortrag V114, 52. Jahrestagung der DGN. 2014
  • 50 Meyer PT, Frings L, Hellwig S. Update on SPECT and PET in parkinsonism – part 2: biomarker imaging of cognitive impairment in Lewy-body diseases. Curr Opin Neurol 2014; 27: 398-404
  • 51 Meyer PT, Hellwig S, Amtage F. Differenzialdiagnostik des neurodegenerativen Parkinson. Syndroms mit nuklearmedizinischen Verfahren. Der Nuklearmediziner 2012; 35: 109-123
  • 52 Minoshima S, Foster NL, Sima AA et al. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 2001; 50: 358-365
  • 53 Mo SJ, Linder J, Forsgren L et al. Pre- and postsynaptic dopamine SPECT in the early phase of idiopathic parkinsonism: a population-based study. Eur J Nucl Med Mol Imaging 2010; 37: 2154-2164
  • 54 Nagayama H, Hamamoto M, Ueda M et al. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005; 76: 249-251
  • 55 Nagayama H, Ueda M, Yamazaki M et al. Abnormal cardiac [(123)I]-meta-iodobenzylguanidine uptake in multiple system atrophy. Mov Disord 2010; 25: 1744-1747
  • 56 Niethammer M, Tang CC, Feigin A et al. A disease-specific metabolic brain network associated with corticobasal degeneration. Brain 2014; 137: 3036-3046
  • 57 Deutsche Gesellschaft für Nuklearmedizin . http://www.nuklearmedizin.de/leistungen/leitlinien/leitlinien.php [letzter Zugriff am 10.10.2016]
  • 58 Oh M, Kim JS, Kim JY et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med 2012; 53: 399-406
  • 59 O’Sullivan SS, Massey LA, Williams DR et al. Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 2008; 131: 1362-1372
  • 60 Pappatà S, Santangelo G, Aarsland D et al. Mild cognitive impairment in drug-naive patients with PD is associated with cerebral hypometabolism. Neurology 2011; 77: 1357-1362
  • 61 Perani D, Bressi S, Testa D et al. Clinical/metabolic correlations in multiple system atrophy. A fludeoxyglucose F 18 positron emission tomographic study. Arch Neurol 1995; 52: 179-185
  • 62 Perju-Dumbrava LD, Kovacs GG, Pirker S et al. Dopamine transporter imaging in autopsy-confirmed Parkinson’s disease and multiple system atrophy. Mov Disord 2012; 27: 65-71
  • 63 Pirker S, Perju-Dumbrava L, Kovacs GG et al. Progressive Dopamine Transporter Binding Loss in Autopsy-Confirmed Corticobasal Degeneration. J Parkinsons Dis 2015; 5: 907-912
  • 64 Pirker W, Asenbaum S, Bencsits G et al. [123I]beta-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000; 15: 1158-1167
  • 65 Plotkin M, Amthauer H, Klaffke S et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm 2005; 112: 677-692
  • 66 Schwarz J, Tatsch K, Arnold G. 123I-iodobenzamide-SPECT in 83 patients with de novo parkinsonism. Neurology 1993; 43: S17-S20
  • 67 Sha SJ, Ghosh PM, Lee SE et al. Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. Alzheimers Res Ther 2015; 7: 8
  • 68 Shoji Y, Nishio Y, Baba T et al. Neural substrates of cognitive subtypes in Parkinson’s disease: a 3-year longitudinal study. PLoS One 2014; 9: e110547
  • 69 Sone M, Yoshida M, Hashizume Y et al. alpha-Synuclein-immunoreactive structure formation is enhanced in sympathetic ganglia of patients with multiple system atrophy. Acta Neuropathol 2005; 110: 19-26
  • 70 Südmeyer M, Antke C, Zizek T et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: a multidimensional statistical approach. J Nucl Med 2011; 52: 733-740
  • 71 Tang CC, Poston KL, Eckert T et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol 2010; 9: 149-158
  • 72 Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol 2006; 5: 75-86
  • 73 Treglia G, Stefanelli A, Cason E et al. Diagnostic performance of iodine-123-metaiodobenzylguanidine scintigraphy in differential diagnosis between Parkinson’s disease and multiple-system atrophy: a systematic review and a meta-analysis. Clin Neurol Neurosurg 2011; 113: 823-829
  • 74 Tripathi M, Dhawan V, Peng S et al. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology 2013; 55: 483-492
  • 75 Tripathi M, Tang CC, Feigin A et al. Automated Differential Diagnosis of Early Parkinsonism Using Metabolic Brain Networks: A Validation Study. J Nucl Med 2016; 57: 60-66
  • 76 Umemura A, Oeda T, Hayashi R et al. Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation of multiple system atrophy and Parkinson’s disease. PLoS One 2013; 8: e61066
  • 77 Van Laere K, Casteels C, De Ceuninck L et al. Dual-tracer dopamine transporter and perfusion SPECT in differential diagnosis of parkinsonism using template-based discriminant analysis. J Nucl Med 2006; 47: 384-392
  • 78 Vander Borght T, Minoshima S, Giordani B et al. Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 1997; 38: 797-802
  • 22 Vlaar AM, van Kroonenburgh MJ, Kessels AG et al. Meta-analysis of the literature on diagnostic accuracy of SPECT in parkinsonian syndromes. BMC Neurol 2007; 7: 27-27
  • 79 Wadia PM, Lang AE. Parkinsonism Relat Disord 2007; 13 (Suppl. 03) S336-S340
  • 80 Yong SW, Yoon JK, An YS et al. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 2007; 14: 1357-1362
  • 81 Zalewski N, Botha H, Whitwell JL et al. FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J Neurol 2014; 261: 710-716