RSS-Feed abonnieren
DOI: 10.1055/s-0042-114041
Prävalenz erhöhter Lipoprotein(a)-Spiegel bei unter 60-jährigen Patienten mit venösen retinalen Gefäßverschlüssen
Prevalence of Elevated Lipoprotein (a) Levels in Patients < 60 Years of Age with Retinal Vein OcclusionPublikationsverlauf
eingereicht 19. Juni 2016
akzeptiert 26. Juli 2016
Publikationsdatum:
19. September 2016 (online)
Zusammenfassung
Hintergrund: Die Bedeutung einer Lipoprotein(a)-Erhöhung [Lp(a)] im Hinblick auf Alter und andere Risikofaktoren für die Entstehung venöser retinaler Gefäßverschlüsse wurde bisher wenig untersucht.
Patienten und Methoden: In einer retrospektiven Fall-Kontroll-Studie verglichen wir die Ergebnisse eines umfassenden Thrombophiliescreenings von 106 jungen Patienten mit venösen retinalen Gefäßverschlüssen (< 60 Jahre zum Zeitpunkt der Erkrankung oder eines früheren thromboembolischen Ereignisses) mit denen von 76 gesunden Probanden.
Ergebnisse: 31 der 106 (29,2 %) Patienten wiesen eine Lp(a)-Erhöhung auf verglichen mit 7 der 76 (9,2 %) gesunden Probanden (p = 0,0009). Die durchschnittlich gemessenen Lp(a)-Spiegel waren in der Patientengruppe signifikant höher als in der gesunden Vergleichsgruppe (p = 0,012). Innerhalb der Patientengruppe beobachteten wir eine signifikante Assoziation von Lp(a) mit einer auffälligen Eigen- oder Familienanamnese hinsichtlich thromboembolischer Ereignisse (p = 0,03). Darüber hinaus zeigte sich innerhalb der Patientengruppe eine Lp(a)-Erhöhung signifikant häufiger in Kombination mit zusätzlichen thrombophilen Risikofaktoren als in der Vergleichsgruppe (p = 0,005). Die logistische Regression mit Abbau bestätigte Lp(a) als unabhängigen Risikofaktor für die Entstehung venöser retinaler Gefäßverschlüsse (p = 0,003).
Schlussfolgerung: Unsere Ergebnisse weisen darauf hin, dass erhöhten Lp(a)-Spiegeln bei jungen Patienten mit venösen retinalen Gefäßverschlüssen eine pathogenetische Bedeutung zukommt. Eine positive Eigen- oder Familienanamnese hinsichtlich thromboembolischer Ereignisse weist signifikant häufiger auf diesen genetisch determinierten Parameter hin.
Abstract
Background: The potential impact of elevated Lipoprotein (a) [Lp(a)] levels on retinal venous occlusive (RVO) diseases with regard to age and various risk factors has not been studied extensively.
Patients and Methods: In a retrospective case-control study, thrombophilia data of 106 young patients (< 60 years at the time of the RVO or a previous thromboembolic event) with RVO and 76 healthy subjects were evaluated.
Results: Elevated Lp(a) plasma levels were significantly more prevalent among RVO patients (29.2 %) than among controls (9.2 %; p = 0.0009). Lp(a) levels were found to be significantly (p = 0.012) different between patients and controls. Moreover, we found that an unusual personal or family history of thromboembolism was a strong predictor of elevated Lp(a) (p = 0.03). We observed a significant correlation between elevated Lp(a) and other coagulation disorders (p = 0.005). Multivariate analysis showed that elevated lipoprotein(a) levels (OR: 3.5; p = 0.003) were an independent risk factor for the development of RVO.
Conclusions: Elevated plasma levels of Lp(a) are associated with the development of RVO. Selective screening of young patients and subjects with a personal or family history of thromboembolism may be helpful in identifying RVO patients with elevated Lp(a).
-
Literatur
- 1 Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolyis 2016; 41: 3-14
- 2 Marcucci R, Sofi F, Grifoni E et al. Retinal vein occlusions: a review for the internist. Intern Emerg Med 2011; 6: 307-314
- 3 Rehak M, Rehak J, Müller M et al. The prevalence of activated protein C (APC) resistance and factor V Leiden is significantly higher in patients with retinal vein occlusion without general risk factors. Thromb Haemost 2008; 99: 925-929
- 4 Hattenbach LO, Arndt CF, Lerche R et al. Retinal vein occlusion and low-dose fibrinolytic therapy (R.O.L.F.): a prospective, randomized, controlled multicenter study of low-dose recombinant tissue plasminogen activator versus hemodilution in retinal vein occlusion. Retina 2009; 29: 932-940
- 5 Wong TY, Larsen EK, Klein R et al. Cardiovascular risk factors for retinal vein occlusion and arteriolar emboli: the Atherosclerosis Risk in Communities & Cardiovascular Health Studies. Ophthalmology 2005; 112: 540-547
- 6 Sodi A, Giambene B, Marcucci R et al. Atherosclerotic and thrombophilic risk factors in patients with recurrent central retinal vein occlusion. Eur J Ophthalmol 2008; 18: 233-238
- 7 Greiner K, Hafner G, Dick B et al. Retinal vascular occlusion and deficiencies in the protein C pathway. Am J Ophthalmol 1999; 128: 69-74
- 8 Kuhli C, Hattenbach LO, Scharrer I et al. High prevalence of resistance to APC in young patients with retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 2002; 240: 163-168
- 9 Kuhli-Hattenbach C, Scharrer I, Lüchtenberg M et al. Coagulation disorders and the risk of retinal vein occlusion. Thromb Haemost 2010; 103: 299-305
- 10 Rehak M, Krcova V, Slavik L et al. The role of thrombophilia in patients with retinal vein occlusion and no systemic risk factors. Can J Ophthalmol 2010; 45: 171-175
- 11 Larsson J, Olafsdottir E, Bauer B. Activated protein C resistance in young adults with central retinal vein occlusion. Br J Ophthalmol 1996; 80: 200-202
- 12 Hattenbach LO, Klais C, Scharrer I. Heparin cofactor II deficiency in central retinal vein occlusion. Acta Ophthalmol Scand 1998; 76: 758-759
- 13 Marcucci R, Bertini L, Giusti B et al. Thrombophilic risk factors in patients with central retinal vein occlusion. Thromb Haemost 2001; 86: 772-776
- 14 Kuhli C, Scharrer I, Koch F et al. Factor XII deficiency: a thrombophilic risk factor for retinal vein occlusion. Am J Ophthalmol 2004; 137: 459-464
- 15 Anglés-Cano E, de la Peña Díaz A, Loyau S. Inhibition of fibrinolysis by lipoprotein(a). Ann N Y Acad Sci 2001; 936: 261-275
- 16 Cockell CS, Marshall JM, Dawson KM et al. Evidence that the conformation of unliganded human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide. Biochem J 1998; 333: 99-105
- 17 McLean JW, Tomlinson JE, Kuang WJ et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 1987; 330: 132-137
- 18 Caplice NM, Panetta C, Peterson TE et al. Lipoprotein (a) binds and inactivates tissue factor pathway inhibitor: a novel link between lipoproteins and thrombosis. Blood 2001; 98: 2980-2987
- 19 Di Nisio M, ten Wolde M, Meijers JC et al. Effects of high plasma lipoprotein (a) levels on tissue factor pathway inhibitor and the protein C pathway. J Thromb Haemost 2005; 3: 2123-2125
- 20 Kamstrup PR, Benn M, Tybjaerg-Hansen A et al. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study. Circulation 2008; 117: 176-184
- 21 Lamon-Fava S, Marcovina SM, Albers JJ et al. Lipoprotein(a) levels, apo(a) isoform size, and coronary heart disease risk in the Framingham Offspring Study. J Lipid Res 2011; 52: 1181-1187
- 22 Nestel PJ, Barnes EH, Tonkin AM et al. Plasma lipoprotein(a) concentration predicts future coronary and cardiovascular events in patients with stable coronary heart disease. Arterioscler Thromb Vasc Biol 2013; 33: 2902-2908
- 23 OʼDonoghue ML, Morrow DA, Tsimikas S et al. Lipoprotein(a) for risk assessment in patients with established coronary artery disease. J Am Coll Cardiol 2014; 63: 520-527
- 24 Bandello F, Viganò DʼAngelo S, Parlavecchia M et al. Hypercoagulability and high lipoprotein (a) levels in patients with central retinal vein occlusion. Thromb Haemost 1994; 72: 39-43
- 25 Lip PL, Blann AD, Jones AF et al. Abnormalities in haemorheological factors and lipoprotein (a) in retinal vascular occlusion: implications for increased vascular risk. Eye (Lond) 1998; 12: 245-251
- 26 Murata M, Saito T, Takahashi S et al. Plasma lipoprotein (a) levels are high in patients with central retinal artery occlusion. Thromb Res 1998; 91: 169-175
- 27 Krause M, Sonntag B, Klamroth R et al. Lipoprotein (a) and other prothrombotic risk factors in Caucasian women with unexplained recurrent miscarriage. Thromb Haemost 2005; 93: 867-871
- 28 Laurell CB. Elektroimmuno Assay. Scand J Clin Lab Invest 1972; 124: 21-37
- 29 Rodger MA, Le Gal G, Carrier M et al. Serum Lipoprotein (a) levels in patients with first unprovoked venous thromboembolism is not associated with subsequent risk of recurrent VTE. Thromb Res 2010; 126: 222-226
- 30 Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction. JAMA 1993; 270: 2195-2199
- 31 Ridker PM, Stampfer MJ, Henneckens CH. Plasma concentrations of lipoprotein(a) and the risk of future stroke. JAMA 1995; 273: 1269-1273
- 32 von Depka M, Nowak-Göttl U, Eisert R et al. Increased lipoprotein (a) levels as an independent risk factor for venous thromboembolism. Blood 2000; 96: 3364-3368
- 33 Müller HM, Diekstall FF, Schmidt E et al. Lipoproein (a): a risk factor for retinal vascular occlusion. Ger J Ophthalmol 1992; 1: 338-341
- 34 Sofi F, Marcucci R, Fedi S et al. High Lipoprotein (a) levels are associated with an increased risk of retinal vein occlusion. Atherosclerosis 2010; 210: 278-281
- 35 Stojakovic T, Scharnagl H, März W et al. Low density lipoprotein triglycerides and lipoprotein (a) are risk factors for retinal vascular occlusion. Clin Chim Acta 2007; 382: 77-81
- 36 Tavola A, DʼAngelo SV, Bandello F et al. Central retinal vein and branch artery occlusion associated with inherited plasminogen deficiency and high lipoprotein (a) levels: a case-report. Thromb Res 1995; 80: 327-331
- 37 Guyton JR. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr Opin Lipidol 2007; 18: 415-420
- 38 Santos RD, Raal FJ, Catapano AL et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 Phase III Trials. Arterioscler Thromb Vasc Biol 2015; 35: 689-699
- 39 Tsimikas S, Viney NJ, Hughes SG et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 2015; 386: 1472-1483