Rofo 2016; 188(11): 1054-1060
DOI: 10.1055/s-0042-115416
Head/Neck
© Georg Thieme Verlag KG Stuttgart · New York

Microwave Ablation of Symptomatic Benign Thyroid Nodules: Energy Requirement per ml Volume Reduction

Mikrowellenablation von symptomatischen, benignen Schilddrüsenknoten: Energiebedarf pro ml Volumenreduktion
Y. Korkusuz
1   Department of Nuclear Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany
,
K. Kohlhase
1   Department of Nuclear Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany
,
D. Gröner
1   Department of Nuclear Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany
,
C. Erbelding
1   Department of Nuclear Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany
,
W. Luboldt
2   Radiology, Multiorgan Screening Foundation, Munich, Germany
,
C. Happel
3   German Center for Thermoablation of Thyroid Nodules, Johann Wolfgang Goethe University Hospital, Frankfurt a. Main, Germany
,
S. Ahmad
4   Department of General and Visceral Surgery, Agaplesion Elisabethenstift Darmstadt, Germany
,
T. J. Vogl
5   Department of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany
,
F. Gruenwald
3   German Center for Thermoablation of Thyroid Nodules, Johann Wolfgang Goethe University Hospital, Frankfurt a. Main, Germany
› Author Affiliations
Further Information

Publication History

21 April 2016

29 July 2016

Publication Date:
14 September 2016 (online)

Abstract

Purpose: Microwave ablation (MWA) represents a novel thermal ablative treatment of benign thyroid nodules. The aim was to determine the energy required per ml volume reduction in order to match the required energy to the volume-of-interest (VOI).

Materials and Methods: 25 patients with 25 nodules (6 solid, 13 complex and 6 cystic) were treated by microwave ablation (MWA). The transmitted energy (E) was correlated with the volume change (∆ V) after 3 months. The energy required per ml volume reduction after 3 months was calculated by E/∆ V.

Results: MWA resulted in a significant (p < 0.0001) volume reduction (∆ V) with a mean of 12.4 ± 13.0 ml (range: 1.5 – 63.2 ml) and relative reduction of 52 ± 16 % (range: 22 – 77 %). There was a positive correlation between E and ∆ V (r = 0.82; p < 0.05). The mean E/∆ V was 1.52 ± 1.08 (range: 0.4 – 4.6) kJ/ml for all nodules and 2.30 ± 1.5 (0.9 – 4.6), 1.5 ± 0.9 (0.4 – 3.6), 0.75 ± 0.25 (0.4 – 1.2) kJ/ml, respectively, for solid, complex and cystic nodules with a significant difference in E/∆ V for solid and cystic (p < 0.03).

Conclusion: The energy required per volume depends on the nodule consistency. Solid nodules require more energy than cystic ones. The estimation of the energy needed per volume-of-interest as an additional parameter should help to avoid under- or overtreatment.

Key Points:

• The estimated required energy for a volume-of-interest depends on the nodule consistency

• In solid nodules a higher energy transmission than in cystic nodules is recommended

• The energy transmission as an additional marker to ultrasound is helpful for improving periprocedural monitoring

Citation Format:

• Korkusuz Y, Kohlhase K, Gröner D et al. Microwave Ablation of Symptomatic Benign Thyroid Nodules: Energy Requirement per ml Volume Reduction. Fortschr Röntgenstr 2016; 188: 1054 – 1060

Zusammenfassung

Hintergrund: Mikrowellenablationen (MWA) stellen eine neuartige thermoablative Behandlung für benigne Schilddrüsenknoten dar. Ziel war es, die benötigte Energie pro ml Volumenreduktion zu benutzen, um die benötigte Energie für ein volume-of-interest (VOI) abschätzen zu können.

Methode: 25 Patienten mit 25 Knoten (6 solide, 13 komplex und 6 zystisch) wurden durch MWA behandelt. Die übertragene Energie (E) wurde mit der Volumenveränderung (∆ V) nach 3 Monaten korreliert. Der Energiebedarf pro ml Volumenreduktion wurde durch E/∆ V bestimmt.

Ergebnisse: MWA zeigte eine signifikante (p < 0,0001) Volumenreduktion (∆ V) im Mittel von 12,4 ± 13,0 ml (range: 1,5 – 63,2 ml) und eine relative Reduktion von 52 ± 16 % (range: 22 – 77 %). Es zeigte sich eine positive Korrelation zwischen E und ∆ V (r = 0,82; p < 0,05). Die mittlere E/∆ V war 1,52 ± 1,08 (range: 0,4 – 4,6) kJ/ml für alle Knoten und 2,30 ± 1,5 (0,9 – 4,6); 1,5 ± 0,9 (0,4 – 3,6); 0,75 ± 0,25 (0,4 – 1,2) kJ/ml für solide, komplexe und zystische Knoten mit einer signifikanten Differenz der in E/∆ V zwischen soliden und zystischen Knoten (p < 0,03).

Schlussfolgerung: Die benötigte Energie pro Volumen ist abhängig von der Knotenkomposition. Solide Knoten benötigen mehr Energie als zystische. Die abgeschätzte Energie für ein volume-of-interest sollte als zusätzlicher Parameter helfen, eine Über- oder Unterbehandlungen zu vermeiden.

Kernaussagen:

• Die abgeschätzte benötigte Energie für ein Volume-of-interest ist abhängig von der Knotenmorphologie.

• In soliden Knoten ist eine höhere Energie-Transmission empfohlen als bei zystischen Knoten.

• Die Energietransmission als zusätzlicher Parameter neben dem Ultraschall ist nützlich, die periprozedurale Überwachung zu verbessern.

 
  • Literature

  • 1 Bernardi S, Dobrinja C, Fabris B et al. Radiofrequency Ablation Compared to Surgery for the Treatment of Benign Thyroid Nodules. Int J Endocrinol 2014; 2014: 1-10
  • 2 Papini E, Rago T, Gambelunghe G et al. Long-term efficacy of ultrasound-guided laser ablation for benign solid thyroid nodules. Results of a three-year multicenter prospective randomized trial. J Cli Endocrinol Metab 2014; 99: 3653-3659
  • 3 Korkusuz H, Nimsdorf F, Happel C et al. Percutaneous microwave ablation of benign thyroid nodules. Functional imaging in comparison to nodular volume reduction at a 3-month follow-up. Nuklearmedizin 2014; 54: 13-19
  • 4 Lombardi CP, Raffaelli M, Princi P et al. Video-assisted Thyroidectomy: Report on the Experience of a Single Center in More than Four Hundred Cases. World J Surg 2006; 30: 794-800
  • 5 Zhang P, Zhang HW, Han XD et al. Meta-analysis of comparison between minimally invasive video-assisted thyroidectomy and conventional thyroidectomy. Eur Rev Med Pharmacol Sci 2015; 19: 1381-1387
  • 6 Puntambekar SP, Palep RJ, Patil AM et al. Endoscopic thyroidectomy: Our technique. J Minim Access Surg 2007; 3: 91-97
  • 7 Ahmed M, Brace CL, Lee FT et al. Principles of and advances in percutaneous ablation. Radiology 2011; 258: 351-369
  • 8 Brace CL. Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng 2010; 38: 65-78
  • 9 Yue W, Wang S, Wang B et al. Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: Safety and imaging follow-up in 222 patients. Eur J Radiol 2013; 82: e11-e16
  • 10 Korkusuz H, Happel C, Heck K et al. Percutaneous thermal microwave ablation of thyroid nodules. Nuklearmedizin 2014; 53: 123-130
  • 11 Shin JH, Baek JH, Ha EJ et al. Radiofrequency ablation of thyroid nodules: Basic principles and clinical application. Int J Endocrinol 2012; 2012: 7
  • 12 Saggiorato E, Angusti T, Rosas R et al. 99mTc-MIBI Imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J Nucl Med 2009; 50: 1785-1793
  • 13 Theissen P, Schmidt M, Ivanova T et al. MIBI scintigraphy in hypofunctioning thyroid nodules--can it predict the dignity of the lesion?. Nuklearmedizin 2009; 48: 144-152
  • 14 Feng B, Liang P, Cheng Z et al. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies. Eur J Endocrinol 2012; 166: 1031-1037
  • 15 Monchik JM, Donatini G, Iannuccilli J et al. Radiofrequency Ablation and Percutaneous Ethanol Injection Treatment for Recurrent Local and Distant Well-Differentiated Thyroid Carcinoma. Ann Surg 2006; 244: 296-304
  • 16 Yu J, Liang P, Yu X et al. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: Results in ex vivo and in vivo porcine livers. Eur J Radiol 2011; 79: 124-130
  • 17 Fan W, Li X, Zhang L et al. Comparison of microwave ablation and multipolar radiofrequency ablation in vivo using two internally cooled probes. Am J Roentgenol 2012; 198: W46-W50
  • 18 Baek JH, Lee JH, Valcavi R et al. Thermal ablation for benign thyroid nodules: radiofrequency and laser. Korean J Radiol 2011; 12: 525-540
  • 19 Cosgrove D, Piscaglia F, Bamber J et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 2: Clinical Applications. Ultraschall in Med 2013; 34: 238-253
  • 20 Korkusuz Y, Erbelding C, Kohlhase K et al. Bipolar Radiofrequency Ablation of Benign Symptomatic Thyroid Nodules: Initial experience with Bipolar Radiofrequency. Fortschr Röntgenstr 2016; 188: 671-675
  • 21 Piscaglia F, Nolsøe C, Dietrich CF et al. The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): Update 2011 on non-hepatic applications. Ultraschall Der Medizin – Eur J Ultrasound 2012; 33: 33-59
  • 22 Claudon AM, Dietrich CF, Choi BI et al. Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver – Update 2012. Ultraschall Der Medizin – Eur J Ultrasound 2012; 34: 11-29
  • 23 Schleder S, Janke M, Agha A et al. Preoperative differentiation of thyroid adenomas and thyroid carcinomas using high resolution contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc 2015; 61: 13-22
  • 24 Wiggermann P, Jung EM, Glöckner S et al. Real-time elastography of hepatic thermal lesions in vitro: Histopathological correlation. Ultraschall Der Medizin 2012; 33: 170-174
  • 25 Wiggermann P, Brünn K, Rennert J et al. Monitoring during hepatic radiofrequency ablation (RFA): Comparison of real-time ultrasound elastography (RTE) and contrast-enhanced ultrasound (CEUS): First clinical results of 25 patients. Ultraschall Der Medizin 2013; 34: 590-594
  • 26 Mauri G, Cova L, Tondolo T et al. Percutaneous Laser Ablation of Metastatic Lymph Nodes in the Neck From Papillary Thyroid Carcinoma: Preliminary Results. J Clin Endocrinol Metab 2013; 98: E1203-E1207
  • 27 Chiang J, Hynes K, Brace CL. Flow-dependent vascular heat transfer during microwave thermal ablation. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 5582-5585
  • 28 Bhardwaj N, Dormer J, Ahmad F et al. Microwave ablation of the liver: a description of lesion evolution over time and an investigation of the heat sink effect. Pathology 2011; 43: 725-731
  • 29 Lubner MG, Brace CL, Ziemlewicz TJ et al. Microwave ablation of hepatic malignancy. Semin Intervent Radiol 2013; 30: 56-66
  • 30 Wright AS, Sampson LA, Warner TF et al. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 2005; 236: 132-139
  • 31 Lu Y, Nan Q, Du J et al. Experimental study on thermal field in the vicinity of arterial bifurcation in microwave ablation therapy. Int J Hyperthermia 2010; 26: 316-326
  • 32 Sun Y, Wang Y, Ni X et al. Comparison of Ablation Zone Between 915- and 2,450-MHz Cooled-Shaft Microwave Antenna: Results in In Vivo Porcine Livers. Am J Roentgenol 2009; 192: 511-514
  • 33 George DF, Bilek MM, McKenzie DR. Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding. Bioelectromagnetics 2008; 29: 324-330
  • 34 Yu Y, Yao K. Non-thermal Cellular Effects of Low-power Microwave Radiation on the Lens and Lens Epithelial Cells. J Int Med Res 2010; 38: 729-736