Subscribe to RSS
DOI: 10.1055/s-0042-116504
Knorpelverletzungen am Kniegelenk
Publication History
Publication Date:
08 May 2017 (online)
Zu den wichtigsten Risikofaktoren einer sekundären Gonarthrose gehören Knorpelverletzungen am Kniegelenk. Knorpelverletzungen treten in der Regel nicht allein auf, sondern begleiten Bandverletzungen oder sind Teil einer intraartikulären Fraktur. Dieser Artikel beleuchtet die Ursachen, das diagnostische Vorgehen und die therapeutischen Optionen inklusive Nachbehandlung bzw. Rehabilitation bei Knorpelverletzungen des Kniegelenks.
-
Knorpelverletzungen gehören am Kniegelenk zu den wichtigsten Risikofaktoren einer sekundären Gonarthrose.
-
Ursachen sind:
-
Kniedistorsionen
-
intraartikuläre Frakturen
-
Patellaluxationen
-
Knieluxationen
-
-
Ein verletztes Knie mit Hämarthros muss klinisch und radiologisch abgeklärt werden.
-
Bei intraartikulären Frakturen ist der Knorpel immer verletzt, weshalb diese anatomisch reponiert und stabil fixiert werden müssen; die Beseitigung einer begleitenden ligamentären Instabilität ist ebenso Teil der Behandlung.
-
Osteochondrale Abscherungen, deren Größe eine Fixierung erlauben, sollen ebenso reponiert und stabilisiert werden.
-
Bei der Therapie von Knorpelläsionen außerhalb der akuten Phase kommen in Abhängigkeit von Tiefe und Ausdehnung chirurgische Techniken zur Anwendung wie
-
die Mikrofrakturierung,
-
die ACT und
-
die Mosaikplastik.
-
-
Die Nachbehandlung sollte phasenadaptiert verlaufen:
-
Anpassungsphase (Phase 1)
-
Rehabilitationsphase (Phase 2)
-
Rückkehr zur normalen Aktivität (Phase 3)
-
-
Literatur
- 1 Emery CA, Roos EM, Verhagen E. et al. OARSI Clinical Trials Recommendations: Design and conduct of clinical trials for primary prevention of osteoarthritis by joint injury prevention in sport and recreation. Osteoarthritis Cartilage 2015; 23: 815-825
- 2 Schneider O, Scharf H-P, Stein T. et al. Inzidenz von Kniegelenkverletzungen. Zahlen für die ambulante und stationäre Versorgung in Deutschland. Orthopäde 2016; 12: 1015-1026
- 3 Schmitt K-U, Hörterer N, Vogt M. et al. Investigating physical fitness and race performance as determinants for the ACL injury risk in Alpine ski racing. BMC Sports Sci Med Rehabil 2016; 8: 23
- 4 Krutsch W, Zellner J, Baumann F. et al. Timing of anterior cruciate ligament reconstruction within the first year after trauma and its influence on treatment of cartilage and meniscus pathology. Knee Surg Sports Traumatol Arthrosc 2015; DOI: 10.1007/s00167-015-3830-2.
- 5 Schmal H, Salzmann GM, Niemeyer P. et al. Early intra-articular complement activation in ankle fractures. Biomed Res Int 2014; 2014: 426893
- 6 Kraus VB, Birmingham J, Stabler TV. et al. Effects of intraarticular IL1-Ra for acute anterior cruciate ligament knee injury: a randomized controlled pilot trial (NCT00332254). Osteoarthritis Cartilage 2012; 20: 271-278
- 7 Schmal H, Niemeyer P, Südkamp NP. et al. Pain perception in knees with circumscribed cartilage lesions is associated with intra-articular IGF-1 expression. Am J Sports Med 2011; 39: 1989-1996
- 8 Fickert S, Niks M, Dinter DJ. et al. Assessment of the diagnostic value of dual-energy CT and MRI in the detection of iatrogenically induced injuries of anterior cruciate ligament in a porcine model. Skeletal Radiol 2013; 42: 411-417
- 9 Jungmann PM, Baum T, Bauer JS. et al. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques?. Biomed Res Int 2014; 2014: 840170
- 10 Salzmann GM, Erdle B, Porichis S. et al. Long-term T2 and qualitative MRI morphology after first-generation knee autologous chondrocyte implantation: Cartilage ultrastructure is not correlated to clinical or qualitative MRI outcome. Am J Sports Med 2014; 42: 1832-1840
- 11 Izadpanah K, Weitzel E, Vicari M. et al. Influence of knee flexion angle and weight bearing on the Tibial Tuberosity-Trochlear Groove (TTTG) distance for evaluation of patellofemoral alignment. Knee Surg Sports Traumatol 2014; 22: 2655-2661
- 12 Lange T, Maclaren J, Herbst M. et al. Knee cartilage MRI with in situ mechanical loading using prospective motion correction. Magn Reson Med 2014; 71: 516-523
- 13 Minas T. A primer in cartilage repair. J Bone Joint Surg Br 2012; 94: 141-146
- 14 Niemeyer P, Albrecht D, Andereya S. et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: A guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 2016; 23: 426-435
- 15 Mundi R, Bedi A, Chow L. et al. Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am J Sports Med 2016; 44: 1888-1895
- 16 Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med 2009; 37 (Suppl. 01) 148S-155
- 17 Schmal H, Mehlhorn A, Stoffel F. et al. In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair. Cytotherapy 2009; 11: 1065-1075
- 18 Mall NA, Harris JD, Cole BJ. Clinical evaluation and preoperative planning of articular cartilage lesions of the knee. J Am Acad Orthop Surg 2015; 23: 633-640
- 19 Lee BJ, Christino MA, Daniels AH. et al. Adolescent patellar osteochondral fracture following patellar dislocation. Knee Surg Sports Traumatol Arthrosc 2013; 21: 1856-1861
- 20 Steadman JR, Briggs KK, Rodrigo JJ. et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19: 477-484
- 21 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 2016; 98: 1332-1339
- 22 Brittberg M, Lindahl A, Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
- 23 Niemeyer P, Pestka JM, Salzmann GM. et al. Influence of cell quality on clinical outcome after autologous chondrocyte implantation. Am J Sports Med 2012; 40: 556-561
- 24 Randsborg PH, Brinchmann J, Løken S. et al. Focal cartilage defects in the knee – a randomized controlled trial comparing autologous chondrocyte implantation with arthroscopic debridement. BMC Musculoskelet Disord 2016; 17: 117
- 25 Nuelle CW, Nuelle JA, Cook JL. et al. Patient factors, donor age, and graft storage duration affect osteochondral allograft outcomes in knees with or without comorbidities. J Knee Surg 2016; DOI: 10.1055/s-0036-1584183.
- 26 Farr J, Gracitelli GC, Shah N. et al. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions. Am J Sports Med 2016; 44: 2015-2022
- 27 Christensen BB, Foldager CB, Jensen J. et al. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc 2016; 24: 2380-2387
- 28 Hunter DJ, Niu J, Felson DT. et al. Knee alignment does not predict incident osteoarthritis: the Framingham osteoarthritis study. Arthritis Rheum 2007; 56: 1212-1218
- 29 Bode G, Schmal H, Pestka JM. et al. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch Orthop Trauma Surg 2013; 133: 43-49
- 30 Niemeyer P, Schmal H, Hauschild O. et al. Open-wedge osteotomy using an internal plate fixator in patients with medial-compartment gonarthritis and varus malalignment: 3-year results with regard to preoperative arthroscopic and radiographic findings. Arthroscopy 2010; 26: 1607-1616
- 31 Wondrasch B, Arøen A, Røtterud JH. et al. The feasibility of a 3-month active rehabilitation program for patients with knee full-thickness articular cartilage lesions: the Oslo Cartilage Active Rehabilitation and Education Study. J Orthop Sports Phys Ther 2013; 43: 310-324