RSS-Feed abonnieren
DOI: 10.1055/s-0042-116550
Third-Party-T-Zell-Spender: eine alternative Quelle virusspezifischer T-Zellen für die adoptive Immuntherapie
Third-Party T-cell Donors: an Alternative Source of Virus-Specific T Cells for Adoptive ImmunotherapyPublikationsverlauf
Publikationsdatum:
15. Dezember 2016 (online)
Zusammenfassung
Nach Stammzell- (SZT) und solider Organtransplantation (SOT) kommt es aufgrund der damit einhergehenden Immunsuppression zum Verlust oder zur funktionellen Störung virusspezifischer T-Zellen (VST), einem essenziellen Element in der zellulären Immunabwehr. Dabei können insbesondere Infektionen oder Reaktivierungen durch persistierende Viren (z. B. humanes Zytomegalievirus [HCMV], Epstein-Barr-Virus [EBV], humanes Herpesvirus 6 [HHV-6]) und lytische Viren (z. B. humanes Adenovirus [hAdV]) zu lebensgefährlichen Komplikationen führen, deren Ausmaß entscheidend von der Geschwindigkeit der Rekonstitution des Immunsystems abhängt. Der adoptive Transfer von VST eines geeigneten Spenders ist ein aussichtsreicher Therapieansatz zur gezielten Unterstützung und beschleunigten Rekonstitution der zellulären Immunität. Dabei sind schon geringste Dosen der VST für einen therapeutisch nachweisbaren Effekt ausreichend, während das Risiko der Graft-versus-Host-Erkrankung (engl. Graft-versus-Host Disease, GvHD) gering ist. Wenn der Stammzellspender nicht zur Verfügung steht oder die entsprechenden Zellen nicht in ausreichender Frequenz vorhanden sind, stellen sowohl HLA-teilkompatible Familienspender als auch Fremdspender als Third-Party-T-Zell-Spender (engl. Third-Party Donor, TPD) eine geeignete alternative Quelle virusspezifischer T-Zellen dar. Der Aufbau und die Etablierung von TPD-Registern und TPD-Zellbanken ermöglichen die schnelle Bereitstellung der spezifischen T-Zellen zur umgehenden, individuell auf den Patienten abgestimmten Behandlung. Um die klinische Anwendung von VST zu verbessern, werden etablierte Verfahren zur Herstellung der VST unter den Gesichtspunkten Sensitivität, Reproduzierbarkeit, Reinheit, Funktionalität und Persistenz angereicherter T-Zellen ständig optimiert und weiterentwickelt.
Abstract
Antiviral T cells play a major role in the cellular immunity against viral pathogens. After stem cell (SCT) or solid organ transplantation (SOT) viral infections or reactivations of human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and adenovirus (hAdV) are major complications and remain a leading cause of morbidity and mortality in immunocompromised recipients. The treatment with immunosuppressive drugs results in a delayed T-cell recovery, which is a key requirement for the effective elimination and control of viral infections following transplantation. The adoptive transfer of virus-specific T cells (VST) derived from a suitable donor is an effective strategy to rapidly restore the antiviral T-cell immunity of the recipient with no acute toxicity or increased risk of developing Graft-versus-Host disease (GvHD). Only low numbers of adoptively transferred antiviral T cells are required to improve clinical outcome. Partially HLA-matched related and unrelated donors can serve as third-party T-cell donors (TPD) and represent an appropriate alternative T-cell source, in particular for patients whose stem cells donors are either lacking virus-reactive T cells or are unavailable for further donations. The development and implementation of TPD registries and TPD T-cell line banks provide a rapid donor search and identification followed by the immediate T-cell allocation. To improve the clinical application for adoptive T-cell therapy, enhancement of established strategies for antiviral T-cell manufacturing considering sensitivity, reproducibility, purity, functionality and persistence of enriched T cells is still ongoing.
-
Literatur
- 1 Maecker-Kolhoff B, Eiz-Vesper B. Broad spectrum antiviral T cells for viral complications after hematopoietic stem cell transplantation. Ann Transl Med 2015; 3: S4
- 2 Eiz-Vesper B, Maecker-Kolhoff B, Blasczyk R. Adoptive T-cell immunotherapy from third-party donors: characterization of donors and set up of a T-cell donor registry. Front Immunol 2012; 3: 410
- 3 Feucht J, Joachim L, Lang P. et al. Adoptive T-cell transfer for refractory viral infections with cytomegalovirus, Epstein-Barr virus or adenovirus after allogeneic stem cell transplantation. Klin Padiatr 2013; 225: 164-169
- 4 Fishman JA, Emery V, Freeman R. et al. Cytomegalovirus in transplantation – challenging the status quo. Clin Transplant 2007; 21: 149-158
- 5 El-Cheikh J, Devillier R, Crocchiolo R. et al. Impact of pretransplant donor and recipient cytomegalovirus serostatus on outcome for multiple myeloma patients undergoing reduced intensity conditioning allogeneic stem cell transplantation. Mediterr J Hematol Infect Dis 2013; 5: e2013026
- 6 Borchers S, Luther S, Lips U. et al. Tetramer monitoring to assess risk factors for recurrent cytomegalovirus reactivation and reconstitution of antiviral immunity post allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2011; 13: 222-236
- 7 Ugarte-Torres A, Hoegh-Petersen M, Liu Y. et al. Donor serostatus has an impact on cytomegalovirus-specific immunity, cytomegaloviral disease incidence, and survival in seropositive hematopoietic cell transplant recipients. Biol Blood Marrow Transplant 2011; 17: 574-585
- 8 Azevedo LS, Pierrotti LC, Abdala E. et al. Cytomegalovirus infection in transplant recipients. Clinics (Sao Paolo) 2015; 70: 515-523
- 9 Styczynski J, Reusser P, Einsele H. et al. Second European Conference on Infections in Leukemia. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant 2009; 43: 757-770
- 10 Ullmann AJ, Schmidt-Hieber M, Bertz H. et al. Infectious Diseases Working Party of the German Society for Hematology and Medical Oncology (AGIHO/DGHO) and the DAG-KBT (German Working Group for Blood and Marrow Transplantation). Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol 2016; 95: 1435-1455
- 11 Tzannou I, Leen AM. Preventing stem cell transplantation-associated viral infections using T-cell therapy. Immunotherapy 2015; 7: 793-810
- 12 Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood 2016; 127: 3331-3340
- 13 Leen AM, Heslop HE, Brenner MK. Antiviral T-cell therapy. Immunol Rev 2014; 258: 12-29
- 14 Heslop HE, Leen AM. T-cell therapy for viral infections. Hematology Am Soc Hematol Educ Program 2013; 2013: 342-347
- 15 Triplett BM, Shook DR, Eldridge P. et al. Rapid memory T-cell reconstitution recapitulating CD45RA-depleted haploidentical transplant graft content in patients with hematologic malignancies. Bone Marrow Transplant 2015; 50: 968-977
- 16 Beloki L, Ciaurriz M, Mansilla C. et al. Assessment of the effector function of CMV-specific CTLs isolated using MHC-multimers from granulocyte-colony stimulating factor mobilized peripheral blood. J Transl Med 2015; 13: 165
- 17 Schmitt A, Tonn T, Busch DH. et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 2011; 51: 591-599
- 18 Uhlin M, Gertow J, Uzunel M. et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis 2012; 55: 1064-1073
- 19 Knabel M, Franz TJ, Schiemann M. et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 2002; 8: 631-637
- 20 Borchers S, Ogonek J, Varanasi PR. et al. Multimer monitoring of CMV-specific T cells in research and in clinical applications. Diagn Microbiol Infect Dis 2014; 78: 201-212
- 21 Rauser G, Einsele H, Sinzger C. et al. Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into recipients of allogeneic stem cell transplants. Blood 2004; 103: 3565-3572
- 22 Stuehler C, Nowakowska J, Bernardini C. et al. Multispecific Aspergillus T cells selected by CD137 or CD154 induce protective immune responses against the most relevant mold infections. J Infect Dis 2015; 211: 1251-1261
- 23 Feucht J, Opherk K, Lang P. et al. Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood 2015; 125: 1986-1994
- 24 Feuchtinger T, Opherk K, Bethge WA. et al. Adoptive transfer of pp 65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 2010; 116: 4360-4367
- 25 Icheva V, Kayser S, Wolff D. et al. Adoptive transfer of epstein-barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol 2013; 31: 39-48
- 26 Moosmann A, Bigalke I, Tischer J. et al. Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood 2010; 115: 2960-2970
- 27 Peggs KS, Thomson K, Samuel E. et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis 2011; 52: 49-57
- 28 Geyeregger R, Freimuller C, Stemberger J. et al. First-in-man clinical results with good manufacturing practice (GMP)-compliant polypeptide-expanded adenovirus-specific T cells after haploidentical hematopoietic stem cell transplantation. J Immunother 2014; 37: 245-249
- 29 Bunse CE, Tischer S, Lahrberg J. et al. Granulocyte colony-stimulating factor impairs CD8(+) T cell functionality by interfering with central activation elements. Clin Exp Immunol 2016; 185: 107-118
- 30 Franzke A, Piao W, Lauber J. et al. G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases. Blood 2003; 102: 734-739
- 31 Toh HC, Sun L, Soe Y. et al. G-CSF induces a potentially tolerant gene and immunophenotype profile in T cells in vivo. Clin Immunol 2009; 132: 83-92
- 32 Qasim W, Derniame S, Gilmour K. et al. Third-party virus-specific T cells eradicate adenoviraemia but trigger bystander graft-versus-host disease. Br J Haematol 2011; 154: 150-153
- 33 Doubrovina E, Oflaz-Sozmen B, Prockop SE. et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 2012; 119: 2644-2656
- 34 Koehne G, Hasan A, Doubrovina E. et al. Immunotherapy with donor T cells sensitized with overlapping pentadecapeptides for treatment of persistent cytomegalovirus infection or viremia. Biol Blood Marrow Transplant 2015; 21: 1663-1678
- 35 Leen AM, Bollard CM, Mendizabal AM. et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 2013; 121: 5113-5123
- 36 Naik S, Nicholas SK, Martinez CA. et al. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol 2016; 137: 1498-1505.e1
- 37 OʼReilly RJ, Prockop S, Hasan AN. et al. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant 2016; 51: 1163-1172
- 38 Papadopoulou A, Gerdemann U, Katari UL. et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med 2014; 6: 242ra83
- 39 Li Pira G, Ivaldi F, Starc N. et al. A registry of HLA-typed donors for production of virus-specific CD4 and CD8 T lymphocytes for adoptive reconstitution of immune-compromised patients. Transfusion 2014; 54: 3145-3154
- 40 Sukdolak C, Tischer S, Dieks D. et al. CMV-, EBV- and ADV-specific T cell immunity: screening and monitoring of potential third-party donors to improve post-transplantation outcome. Biol Blood Marrow Transplant 2013; 19: 1480-1492
- 41 Tischer S, Priesner C, Heuft HG. et al. Rapid generation of clinical-grade antiviral T cells: selection of suitable T-cell donors and GMP-compliant manufacturing of antiviral T cells. J Transl Med 2014; 12: 336
- 42 Vickers MA, Wilkie GM, Robinson N. et al. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol 2014; 167: 402-410
- 43 Tischer S, Dieks D, Sukdolak C. et al. Evaluation of suitable target antigens and immunoassays for high-accuracy immune monitoring of cytomegalovirus and Epstein-Barr virus-specific T cells as targets of interest in immunotherapeutic approaches. J Immunol Methods 2014; 408: 101-113
- 44 OʼReilly RJ, Hasan A, Doubrovina E. et al. Novel strategies for adoptive therapy following HLA disparate transplants. Best Pract Res Clin Haematol 2011; 24: 381-391
- 45 Arasaratnam RJ, Leen AM. Adoptive T cell therapy for the treatment of viral infections. Ann Transl Med 2015; 3: 278
- 46 OʼReilly RJ, Koehne G, Hasan AN. et al. T-cell depleted allogeneic hematopoietic cell transplants as a platform for adoptive therapy with leukemia selective or virus-specific T-cells. Bone Marrow Transplant 2015; 50 (Suppl. 02) S43-S50
- 47 Haque T, Wilkie GM, Jones MM. et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 2007; 110: 1123-1131
- 48 Haque T, Wilkie GM, Taylor C. et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 2002; 360: 436-442