Subscribe to RSS

DOI: 10.1055/s-0042-118598
Comparison of Errors of 35 Weight Estimation Formulae in a Standard Collective
Vergleich der Fehler von 35 Gewichtsschätzungsformeln in einem NormkollektivPublication History
received 16 July 2016
revised 05 October 2016
accepted 05 October 2016
Publication Date:
25 November 2016 (online)

Abstract
Issue: The estimation of foetal weight is an integral part of prenatal care and obstetric routine. In spite of its known susceptibility to errors in cases of underweight or overweight babies, important obstetric decisions depend on it. In the present contribution we have examined the accuracy and error distribution of 35 weight estimation formulae within the normal weight range of 2500–4000 g. The aim of the study was to identify the weight estimation formulae with the best possible correspondence to the requirements of clinical routine.
Materials and Methods: 35 clinically established weight estimation formulae were analysed in 3416 foetuses with weights between 2500 and 4000 g. For this we determined and compared the mean percentage error (MPE), the mean absolute percentage error (MAPE), and the proportions of estimates within the error ranges of 5, 10, 20 and 30 %. In addition, separate regression lines were calculated for the relationship between estimated and actual birth weights for the weight range 2500–4000 g. The formulae were thus examined for possible inhomogeneities.
Results: The lowest MPE were achieved with the Hadlock III and V formulae (0.8 %, STW 9.2 % or, respectively, −0.8 %, STW 10.0 %). The lowest absolute error (6.6 %) as well as the most favourable frequency distribution in cases below 5 % and 10 % error (43.9 and 77.5) were seen for the Halaska formula. In graphic representations of the regression lines, 16 formulae revealed a weight overestimation in the lower weight range and an underestimation in the upper range. 14 formulae gave underestimations and merely 5 gave overestimations over the entire tested weight range.
Conclusion: The majority of the tested formulae gave underestimations of the actual birth weight over the entire weight range or at least in the upper weight range. This result supports the current strategy of a two-stage weight estimation in which a formula is first chosen after a pre-estimation of the weight range.
Zusammenfassung
Fragestellung: Die fetale Gewichtsschätzung ist integraler Bestandteil der Schwangerenvorsorge und des geburtshilflichen Alltags. Trotz ihrer bei unter- und übergewichtigen Kindern bekannten Fehleranfälligkeit, hängen wichtige geburtshilfliche Entscheidungen von ihr ab. In der vorliegenden Arbeit wird die Genauigkeit und die Fehlerverteilung von 35 Gewichtsformeln innerhalb des normalen Gewichtsbereichs von 2500–4000 g untersucht. Ziel der Untersuchung war es, Gewichtsformeln zu finden, die den Anforderungen des klinischen Alltags bestmöglich entsprechen.
Material und Methodik: 35 klinisch etablierte Gewichtsschätzformeln wurden an 3416 Feten mit einem Gewicht zwischen 2500 und 4000 g analysiert. Hierbei wurden der mittlere prozentuale Fehler (MPF), der mittlere absolute prozentuale Fehler (MAPF), der Anteil der Schätzungen innerhalb eines Fehlerbereichs von 5, 10, 20 und 30 % ermittelt und verglichen. Darüber hinaus wurden für den Zusammenhang von Schätz- zu tatsächlichem Geburtsgewicht getrennte Regressionsgeraden für den Gewichtsbereich 2500–4000 g berechnet. Die Formeln wurden somit auf eine mögliche Inhomogenität überprüft.
Ergebnisse: Der kleinste MPF wurde mittels den Hadlock-III- und -V-Formeln erzielt (0,8 %, STW 9,2 % bzw. −0,8 %, STW 10,0 %). Den geringsten absoluten Fehler (6,6 %) sowie die günstigste Häufigkeitsverteilung bei Fällen unter 5 % und 10 % Fehler (43,9 und 77,5) wies die Halaska-Formel auf. In der grafischen Darstellung der Regressionsgeraden zeigen 16 Formeln eine Gewichtsüberschätzung im unteren Gewichtsbereich und eine -unterschätzung im oberen Bereich. 14 Formeln unterschätzen und lediglich 5 Formeln überschätzen über den getesteten Gewichtsbereich.
Schlussfolgerung: Die Mehrheit der Formeln unterschätzt im vollständigen oder zumindest oberen Gewichtsbereich das tatsächliche Geburtsgewicht. Die Ergebnisse unterstützen aktuelle Ansätze eines 2-stufigen Vorgehens der Gewichtsschätzung, bei der die Formel erst nach Voreinschätzung des Gewichtsbereichs gewählt wird.
-
References
- 1 Willocks J, Donald I, Duggan TC et al. Foetal cephalometry by ultrasound. J Obstet Gynaecol Br Commonw 1964; 71: 11-20
- 2 Loeffler FE. Clinical foetal weight prediction. J Obstet Gynaecol Br Commonw 1967; 74: 675-677
- 3 Warsof SL, Gohari P, Berkowitz RL et al. The estimation of fetal weight by computer-assisted analysis. Am J Obstet Gynecol 1977; 128: 881-892
- 4 Hadlock FP, Harrist RB, Sharman RS et al. Estimation of fetal weight with the use of head, body, and femur measurements–a prospective study. Am J Obstet Gynecol 1985; 151: 333-337
- 5 Hadlock FP, Harrist RB, Carpenter RJ et al. Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements. Radiology 1984; 150: 535-540
- 6 Hoopmann M, Bernau B, Hart N et al. Do specific weight formulas for fetuses ≤ 1500 g really improve weight estimation?. Ultraschall in Med 2010; 31: 48-52
- 7 Hoopmann M, Abele H, Wagner N et al. Performance of 36 different weight estimation formulae in fetuses with macrosomia. Fetal Diagn Ther 2010; 27: 204-213
- 8 Abele H, Hoopmann M, Wagner N et al. Accuracy of sonographic fetal weight estimation of fetuses with a birth weight of 1500 g or less. Eur J Obstet Gynecol Reprod Biol 2010; 153: 131-137
- 9 American College of Obstetricians and Gynecologists. ACOG Practice bulletin no. 134: fetal growth restriction. Obstet Gynecol 2013; 121: 1122-1133
- 10 Gyurkovits Z, Kálló K, Bakki J et al. Neonatal outcome of macrosomic infants: an analysis of a two-year period. Eur J Obstet Gynecol Reprod Biol 2011; 159: 289-292
- 11 Henriksen T. The macrosomic fetus: a challenge in current obstetrics. Acta Obstet Gynecol Scand 2008; 87: 134-145
- 12 Schmidt U, Temerinac D, Bildstein K et al. Finding the most accurate method to measure head circumference for fetal weight estimation. Eur J Obstet Gynecol 2014; 178: 153-156
- 13 Birnholz JC. An algorithmic approach to accurate ultrasonic fetal weight estimation. Invest Radiol 1986; 21: 571-576
- 14 Combs CA, Jaekle RK, Rosenn B et al. Sonographic estimation of fetal weight based on a model of fetal volume. Obstet Gynecol 1993; 82: 365-370
- 15 Campbell S, Wilkin D. Ultrasonic measurement of fetal abdomen circumference in the estimation of fetal weight. Br J Obstet Gynaecol 1975; 82: 689-697
- 16 Ferrero A, Maggi E, Giancotti A et al. Regression formula for estimation of fetal weight with use of abdominal circumference and femur length: a prospective study. J Ultrasound Med 1994; 13: 823-833
- 17 Halaska MG, Vlk R, Feldmar P et al. Predicting term birth weight using ultrasound and maternal characteristics. Eur J Obstet Gynecol 2006; 128: 231-235
- 18 Hansmann M, Schuhmacher H, Voigt U. Mehrparametrische nicht lineare Gewichtsschätzung mittels Ultraschall unter Berücksichtigung des Gestationsalters. In: Kratochwil A, Reinold E, Hrsg. Ultraschalldiagnostik. Stuttgart: Thieme; 1978
- 19 Hart NC, Hilbert A, Meurer B et al. Macrosomia: a new formula for optimized fetal weight estimation. Ultrasound Obstet Gynecol 2010; 35: 42-47
- 20 Higginbottom J. Estimation of fetal weight. Ultrasound Med Biol 1977; 3: 59
- 21 Jordaan HV, Dunn LJ. A new method of evaluating fetal growth. Obstet Gynecol 1978; 51: 659-665
- 22 Merz E, Lieser H, Schicketanz KH et al. [Intrauterine fetal weight assessment using ultrasound. A comparison of several weight assessment methods and development of a new formula for the determination of fetal weight]. Ultraschall Med 1988; 9: 15-24
- 23 Marsál K. Antenatal diagnosis of intrauterine growth retardation by ultrasound. Int J Technol Assess Health Care 1992; 8 (Suppl. 01) 160-169
- 24 Mielke G, Pietschbreitfeld B, Salinas R et al. A new formula for prenatal ultrasonographic weight estimation in extremely preterm fetuses. Gynecol Obstet Invest 1995; 40: 84-88
- 25 Mielke G, Pietschbreitfeld B, Regele B et al. An accurate method for sonographic estimation of the weight of very preterm fetuses. Gynecol Obstet Invest 1997; 43: 98-103
- 26 Ott WJ, Doyle S, Flamm S et al. Accurate ultrasonic estimation of fetal weight. Prospective analysis of new ultrasonic formulas. Am J Perinatol 1986; 3: 307-310
- 27 Rose BI, McCallum WD. A simplified method for estimating fetal weight using ultrasound measurements. Obstet Gynecol 1987; 69: 671-675
- 28 Sabbagha R, Minogue J, Tamura R et al. Estimation of birth-weight by use of ultrasonographic formulas targeted to large-for-gestational-age, appropriate-for-gestational-age, and small-for-gestational-age fetuses. Am J Obstet Gynecol 1989; 160: 854-862
- 29 Schild RL, Sachs C, Fimmers R et al. Sex-specific fetal weight prediction by ultrasound. Ultrasound Obstet Gynecol 2004; 23: 30-35
- 30 Schillinger H, Müller R, Wode J et al. [Intrauterine weight determination of the fetus using ultrasonics]. Arch Gynakol 1975; 219: 399-401
- 31 Scott F, Beeby P, Abbott J et al. New formula for estimating fetal weight below 1000 g: comparison with existing formulas. J Ultrasound Med 1996; 15: 669-672
- 32 Shepard MJ, Richards VA, Berkowitz RL et al. An evaluation of two equations for predicting fetal weight by ultrasound. Am J Obstet Gynecol 1982; 142: 47-54
- 33 Shinozuka N, Okai T, Kohzuma S et al. Formulas for fetal weight estimation by ultrasound measurements based on neonatal specific gravities and volumes. Am J Obstet Gynecol 1987; 157: 1140-1145
- 34 Siemer J, Hilbert A, Hart N et al. A new sonographic weight formula for fetuses. Ultraschall in Med 2009; 30: 47-51
- 35 Thurnau GR, Tamura RK, Sabbagha R et al. A simple estimated fetal weight equation based on real-time ultrasound measurements of fetuses less than thirty-four weeksʼ gestation. Am J Obstet Gynecol 1983; 145: 557-561
- 36 Vintzileos AM, Campbell WA, Rodis JF et al. Fetal weight estimation formulas with head, abdominal, femur, and thigh circumference measurements. Am J Obstet Gynecol 1987; 157: 410-414
- 37 Weiner CP, Sabbagha RE, Vaisrub N et al. Ultrasonic fetal weight prediction: role of head circumference and femur length. Obstet Gynecol 1985; 65: 812-817
- 38 Woo J, Wan M. An evaluation of fetal weight prediction using a simple equation containing the fetal femur length. J Ultrasound Med 1986; 5: 453-457
- 39 Schild RL, Fell K, Fimmers R et al. A new formula for calculating weight in the fetus of < or = 1600 g. Ultrasound Obstet Gynecol 2004; 24: 775-780
- 40 Melamed N, Yogev Y, Meizner I et al. Sonographic fetal weight estimation: which model should be used?. J Ultrasound Med 2009; 28: 617-629
- 41 Siemer J, Egger N, Hart N et al. Fetal weight estimation by ultrasound: comparison of 11 different formulae and examiners with differing skill levels. Ultraschall Med 2008; 29: 159-164
- 42 Nahum GG, Stanislaw H. Ultrasonographic prediction of term birth weight: How accurate is it?. Am J Obstet Gynecol 2003; 188: 566-574
- 43 Haist M, Schauf B, Kagan KO et al. Verbesserung der Ergebnisqualität durch standardisiertes Training am Ultraschallsimulator. Geburtsh Frauenheilk 2010; 70: 844-848
- 44 Faschingbauer F, Raabe E, Heimrich J et al. Accuracy of sonographic fetal weight estimation: influence of the scan-to-delivery interval in combination with the applied weight estimation formula. Arch Gynecol Obstet 2016; 294: 487-493
- 45 Nahum GG, Stanislaw H. Fetal macrosomia is predicted earlier by combination birth-weight estimation methods than by ultrasound alone. Ultrasound Obstet Gynecol 2009; 34: 122
- 46 Mazouni C, Rouzier R, Ledu R et al. Development and internal validation of a nomogram to predict macrosomia. Ultrasound Obstet Gynecol 2007; 29: 544-549
- 47 Balsyte D, Schäffer L, Burkhardt T et al. Sonographic prediction of macrosomia cannot be improved by combination with pregnancy-specific characteristics. Ultrasound Obstet Gynecol 2009; 33: 453-458
- 48 Aksoy H, Aksoy U, Karadag OI et al. Influence of maternal body mass index on sonographic fetal weight estimation prior to scheduled delivery. J Obstet Gynaecol Res 2015; 41: 1556-1561
- 49 Heer IM, Kumper C, Vogtle N et al. Analysis of factors influencing the ultrasonic fetal weight estimation. Fetal Diagn Ther 2008; 23: 204-210
- 50 Kehl S, Koerber C, Hart N et al. New sonographic method for fetuses with small abdominal circumference improves fetal weight estimation. Ultraschall Med 2012; 33: 469-473
- 51 Kehl S, Koerber C, Hart N et al. New sonographic method for fetuses with a large abdominal circumference improves fetal weight estimation. Ultraschall Med 2012; 33: 265-269
- 52 Balsyte D, Schäffer L, Zimmermann R et al. Optimized sonographic weight estimation of fetuses over 3500 g using biometry-guided formula selection. Ultraschall Med 2015; [Epub ahead of print]
- 53 Pagani G, Palai N, Zatti S et al. Fetal weight estimation in gestational diabetic pregnancies: comparison between conventional and three-dimensional fractional thigh volume methods using gestation-adjusted projection. Ultrasound Obstet Gynecol 2014; 43: 72-76