Planta Medica International Open, Inhaltsverzeichnis Planta Medica International Open 2017; 4(01): e1-e7DOI: 10.1055/s-0042-121608 Letter Georg Thieme Verlag KG Stuttgart · New York Inhibition of Degranulation of RBL-2H3 Cells by Extracts and Compounds from Armillaria ostoyae Simon Merdivan 1 Institute of Pharmacy, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany , Kristina Jenett-Siems 2 Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany , Karsten Siems 3 AnalytiCon Discovery GmbH, Potsdam, Germany , Timo Niedermeyer 4 Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Tübingen, Germany , Michael J. Solis 5 Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany 6 Department of Natural Sciences, College of Science and Information Technology, Ateneo de Zamboanga University, Zamboanga City, Philippines , Martin Unterseher 5 Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany , Ulrike Lindequist 1 Institute of Pharmacy, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany › Institutsangaben Artikel empfehlen Abstract Abstract Armillaria ostoyae (Romagn.) Herink is an edible honey mushroom from the family Physalacriaceae (Agaricales, Basidiomycota). Dichloromethane extracts of mushroom mycelium and fruiting bodies exhibited a significant degranulation inhibiting effect on RBL-2H3 cells using noncytotoxic concentrations. Bioactivity-guided fractionation of the mycelial dichloromethane extract led to the isolation of sesquiterpen aryl esters. Methyl linoleate could also be isolated. These substances were obtained from A. ostoyae for the first time, with one compound representing an undescribed natural product. Purified compounds melleolide H and J inhibited degranulation significantly. A. ostoyae could be a candidate for support of allergy treatments. Key words Key words Armillaria ostoyae - Physalacriaceae - RBL-2H3 - sesquiterpene aryl esters - β-hexosaminidase assay - melleolide - cytotoxicity Volltext Referenzen References 1 Romagnesi H. Observations on Armillaria. Bull Trimest Soc Mycol Fr 1970; 86: 257-265 2 Dobbertin M, Baltensweiler A, Rigling D. Tree mortality in an unmanaged mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi. For Ecol Manage 2001; 145: 79-89 3 Cleary MR, van der Kamp BJ, Morrison DJ. Effects of wounding and fungal infection with Armillaria ostoyae in three conifer species. II. Host response to the pathogen. Forest Pathol 2011; 42: 109-123 4 Cleary MR, van der Kamp BJ, Morrison DJ. Effects of wounding and fungal infection with Armillaria ostoyae in three conifer species. I. Host response to abiotic wounding in non-infected roots. Forest Pathol 2012; 42: 100-108 5 Cruickshank M, Morrison DJ, Lalumière A. The interaction between competition in interior Douglas-fir plantations and disease caused by Armillaria ostoyae in British Columbia. For Ecol Manage 2009; 257: 443-452 6 Entry JA, Cromack jr. K, Hansen E, Waring R. Response of western coniferous seedlings to infection by Armillaria ostoyae under limited light and nitrogen. Phytophathology 1991; 81: 89-94 7 Pearce RB. Tansley Review No. 87. Antimicrobial defences in the wood of living trees. New Phytol 1996; 132: 203-233 8 Schmitt CL, Tatum ML. The Malheur national forest: Location of the worldʼs largest living organism [The humongous fungus]. Portland, Oregon: United States Department of Agriculture (USDA), Forest Service, Pacific Northwest Region; 2008 9 Mihail JD. Bioluminescence patterns among North American Armillaria species. Fungal Biol 2015; 119: 528-537 10 Arnone A, Cardillo R, Nasini G. Structures of melleolides B–D, three antibacterial sesquiterpenoids from Armillaria mellea . Phytochemistry 1986; 25: 471-474 11 Arnone A, Cardillo R, Di Modugno V, Nasini G. Secondary mold metabolites. XXII. Isolation and structure elucidation of melledonals D and E and melleolides E–H, novel sesquiterpenoid aryl esters from Clitocybe elegans and Armillaria mellea . Gazz Chim Ital 1988; 118: 517-521 12 Arnone A, Cardillo R, Nasini G. Secondary mould metabolites. Part 19. Structure elucidation and absolute configuration of melledonals B and C, novel antibacterial sesquiterpenoids from Armillaria mellea. X-ray molecular structure of melledonal C. J Chem Soc Perkin Trans I 1988; 503-510 13 Chen CC, Kuo YH, Cheng JJ, Sung PJ, Ni CL, Chen CC, Shen CC. Three new sesquiterpene aryl esters from the mycelium of Armillaria mellea . Molecules 2015; 20: 9994-10003 14 Donnelly DMX, Sanada S, OʼReilly J, Polonsky J, Prangé T, Pascard C. Isolation and structure (X-ray analysis) of the orsellinate of armillol, a new antibacterial metabolite from Armillaria mellea . J Chem Soc Chem Commun 1982; 135-137 15 Donnelly DMX, Hutchinson RM, Coveney D, Yonemitsu M. Sesquiterpene aryl esters from Armillaria mellea . Phytochemistry 1990; 29: 2569-2572 16 Donnelly DMX, Abe F, Coveney D, Fukuda N, OʼReilly J. Antibacterial sesquiterpene aryl esters from Armillaria mellea . J Nat Prod 1985; 48: 10-16 17 Liu TP, Chen CC, Shiao PY, Shieh HR, Chen YY, Chen YJ. Armillaridin, a honey medicinal mushroom, Armillaria mellea (higher basidiomycetes) component, inhibits differentiation and activation of human macrophages. Int J Med Mushrooms 2015; 17: 161-168 18 Midland SL, Izac RR, Wing RM, Zaki A, Munnecke D, Sims JJ. Melleolide, a new antibiotic from Armillaria mellea . Tetrahedron Lett 1982; 23: 2515-2518 19 Momose I, Sekizawa R, Hosokawa N, Iinuma H, Matsui S, Nakamura H, Naganawa H, Hamada M, Takeuchi T. Melleolides K, L and M, new melleolides from Armillaria mellea . J Antibiot 2000; 53: 137-143 20 Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT. Two novel protoilludane norsesquiterpenoid esters, armillasin and armillatin, from Armillaria mellea . Planta Med 1991; 57: 478-480 21 Arnone A, Cardillo R, Nasini G. Secondary mould metabolites. XXIII. Isolation and structure elucidation of melleolides I and J and armellides A and B, novel sesquiterpenoid aryl esters from Armillaria novae-zelandiae . Gazz Chim Ital 1988; 118: 523-527 22 Donnelly DMX, Konishi T, Dunne O, Cremin P. Sesquiterpene aryl esters from Armillaria tabescens . Phytochemistry 1997; 44: 1473-1478 23 Cell Degranulation – MeSH – NCBI. Available at. https://www.ncbi.nlm.nih.gov/mesh/?term=cell+degranulation Accessed October 5, 2016 24 Mastuda H, Morikawa T, Ueda K, Yoshikawa M. Structural requirements of flavonoids for inhibition of antigen-induced degranulation, TNF-α and IL-4 production from RBL-2H3 cells. Bioorg Med Chem 2002; 10: 3123-3128 25 Kobori H, Sekiya A, Suzuki T, Choi JH, Hirai H, Kawagishi H. Bioactive sesquiterpene aryl esters from the culture broth of Armillaria sp. J Nat Prod 2015; 78: 163-167 26 Appendino G, Gariboldi P, Menichini F. Oxygenated nerolidol derivatives from Artemisia alba . Phytochemistry 1985; 24: 1729-1733 27 Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT. Chemical constituents of Armillaria mellea mycelium. V. Isolation and characterization of armillarilin and armillarinin. Yao Xue Xue Bao 1990; 25: 24-28 28 Bohnert M, Nützmann HW, Schroeckh V, Horn F, Dahse HM, Brakhage AA, Hoffmeister D. Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure – activity relationships. Phytochemistry 2014; 105: 101-108 29 Bohnert M, Miethbauer S, Dahse HM, Ziemen J, Nett M, Hoffmeister D. In vitro cytotoxicity of melleolide antibiotics: structural and mechanistic aspects. Bioorg Med Chem Lett 2011; 21: 2003-2006 30 Misiek M, Williams J, Schmich K, Hüttel W, Merfort I, Salomon CE, Aldrich CC, Hoffmeister D. Structure and cytotoxicity of arnamial and related fungal sesquiterpene aryl esters. J Nat Prod 2009; 72: 1888-1891 31 Abramson J, Pecht I. Clustering the mast cell function-associated antigen (MAFA) leads to tyrosine phosphorylation of p62Dok and SHIP and affects RBL-2H3 cell cycle. Immunol Lett 2002; 82: 23-28 32 Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 2012; 109: 6241-6246 33 Solis MJL, Yurkov A, dela Cruz TE, Unterseher M. Leaf-inhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol Prog 2015; 14: 1019 34 Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2012; 41: D36-D42 35 Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid mulitple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30: 3059-3066 36 Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30: 772-780 37 Maddison WP, Madisson DR. Mesquite: a modular system for evolutionary analysis, Version 2.75. Available at. http://mesquiteproject.org 38 Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27: 221-224 39 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725-2729 40 Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996; 12: 357-358 41 Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17: 754-755 42 Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312-1313 43 Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 2012; 12: 335-337 Zusatzmaterial Zusatzmaterial Supporting Information