Subscribe to RSS
DOI: 10.1055/s-0042-121748
Bedeutung von Vitamin D im Sport: Reduziert ein Mangel die Leistungsfähigkeit?
Impact of Vitamin D in Sports: Does Vitamin D Insufficiency Compromise Athletic Performance?Publication History
Publication Date:
20 February 2017 (online)
Zusammenfassung
Einleitung Vitamin D spielt eine Rolle in der Kalziumhomöostase und beeinflusst die Expression von über 900 Genen mit Folgen für die muskuloskelettale Gesundheit und Funktion. Darüber hinaus konnten durch Nachweis des Vitamin D-Rezeptors (VDR) in vielen Geweben des Organismus weitere Effekte von Vitamin D beobachtet werden.
Material und Methoden Im Rahmen der vorliegenden Arbeit wurde die Literatur im Hinblick auf die Bedeutung von Vitamin D für die muskuloskelettale Gesundheit und die maximale sportliche Leistungsfähigkeit untersucht.
Ergebnisse und Diskussion Die hohe Prävalenz für einen Vitamin D-Mangel, die bereits aus der Allgemeinbevölkerung bekannt ist, konnte für Athleten unterschiedlicher Sportarten bestätigt werden. Somit ergibt sich eine Relevanz für den Leistungssport. Hierfür sind u. a. die geografische Lage, das vorherrschende Klima, die Tages- und Jahreszeit sowie die Sportart (Indoor/Outdoor) verantwortlich. Es konnten Zusammenhänge zwischen verschiedenen Serumkonzentrationen von 25-OH-D3 und unterschiedlichen Aspekten des Leistungssports beobachtet werden. So gewährleistet eine Serumkonzentration oberhalb von 30 ng/ml eine regelrechte Mineralisation der Knochenmatrix und trägt entscheidend zur Knochengesundheit bei. Auch konnte in diesem Bereich ein positiver Zusammenhang mit einer beschleunigten Regeneration der muskulären Kraft gezeigt werden. Höhere Werte, oberhalb von 40 ng/ml, hatten einen protektiven Effekt bei der Genese von Stressfrakturen. Hinsichtlich der Leistungsfähigkeit vermuten Forscher Werte von ≥ 50 ng/ml als Voraussetzung für die Entwicklung der maximalen körperlichen Leistung. Während der Nutzen von höheren Serumkonzentrationen umstritten ist, zeigen sich deutliche Defizite der Mineralisation (Rachitis, Osteomalazie) und muskulären Funktion (Reversible Myopathie) bei Unterschreiten einer Konzentration 30 ng/ml.
Schlussfolgerung Sportmedizinische Untersuchungen sollten die laborchemische Bestimmung von 25-OH-D3, Kalzium, Kreatinin und Parathormon enthalten und somit die Vitamin D-abhängige Kalziumhomöostase adressieren. Im Falle eines Mangelzustandes kann durch Optimierung der Lebensweise und ggf. orale Substitution von Cholecalciferol eine Normalisierung auf ≥ 30 ng/ml herbeigeführt werden. Eine solche Konzentration zeigt einen protektiven und leistungssteigernden Effekt. Sie ist wichtig für die Wiederherstellung und Erhaltung der muskuloskelettalen Gesundheit und Leistungsfähigkeit.
Abstract
Introduction Vitamin D is essential for calcium homeostasis and regulates the expression of over 900 genes. It thereby influences musculoskeletal health and function. Additionally, multiple other effects were observed through the detection of vitamin D receptors (VDR) in numerous tissues of the human body.
Material and Methods We reviewed the literature regarding evidence of the impact of vitamin D on musculoskeletal health and peak athletic performance.
Results and Discussion It is well known that there is a high prevalence of vitamin D deficiency in the average European population. This article confirmed the same for athletes in different disciplines. Therefore, vitamin D deficiency and its effects are relevant for competitive sports. The surprisingly high prevalence of inadequate vitamin D levels depends on the geographic location, the time of day and year, local climate conditions, and sports disciplines (indoor vs. outdoor). Based on the analysed literature, we found several correlations between 25-OH-D3 serum levels and different aspects of competitive sports. A serum level ≥ 30 ng/ml provides sufficient mineralisation of non-mineralised bone matrix and is therefore crucial for skeletal health. Furthermore, this concentration was positively correlated with an accelerated regeneration of muscular force. Levels above 40 ng/ml provided a protective effect on the development of stress fractures. Researchers suspect that levels above 50 ng/ml are required for athletes to achieve maximal physical performance. While there is an ongoing discussion amongst researchers regarding beneficial effects of such high levels, it is well known that blood levels lower than 30 ng/ml lead to mineralisation defects in bone (rickets, osteomalacia) and muscular function (reversible myopathy).
Conclusion This review suggests that athletes should have an evaluation of vitamin D-dependent calcium homeostasis based on laboratory tests of 25-OH-D3, calcium, creatinine, and parathyroid hormone. In case of vitamin D insufficiency, normal blood levels of ≥ 30 ng/ml may be restored by optimising the athlete’s lifestyle and, if appropriate, oral substitution of cholecalciferol. This concentration is associated with a protective effect and enhancement of physical performance. Consequently, it is a requirement for restoring and maintaining musculoskeletal health and athletic performance.
-
Literatur
- 1 Busse B. Bale HA. Zimmermann EA. et al. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med 2013; 5: 193ra188
- 2 Bischoff-Ferrari H. Vitamin D – from essentiality to functionality. Int J Vitam Nutr Res 2012; 82: 321-326
- 3 Bischoff-Ferrari HA. Dawson-Hughes B. Willett WC. et al. Effect of Vitamin D on falls: a meta-analysis. JAMA 2004; 291: 1999-2006
- 4 Schott GD. Wills MR. Muscle weakness in osteomalacia. Lancet 1976; 1: 626-629
- 5 Girgis CM. Clifton-Bligh RJ. Hamrick MW. et al. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 2013; 34: 33-83
- 6 Girgis CM. Mokbel N. Cha KM. et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology 2014; 155: 3227-3237
- 7 Simpson RU. Thomas GA. Arnold AJ. Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem 1985; 260: 8882-8891
- 8 Bischoff HA. Borchers M. Gudat F. et al. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 2001; 33: 19-24
- 9 Stumpf WE. Drug localization and targeting with receptor microscopic autoradiography. J Pharmacol Toxicol Methods 2005; 51: 25-40
- 10 Dahlquist DT. Dieter BP. Koehle MS. Plausible ergogenic effects of vitamin D on athletic performance and recovery. J Int Soc Sports Nutr 2015; 12: 33
- 11 Gonzalez-Gross M. Valtuena J. Breidenassel C. et al. Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br J Nutr 2012; 107: 755-764
- 12 Holick MF. Binkley NC. Bischoff-Ferrari HA. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1911-1930
- 13 Priemel M. von Domarus C. Klatte TO. et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 2010; 25: 305-312
- 14 Farrokhyar F. Tabasinejad R. Dao D. et al. Prevalence of vitamin D inadequacy in athletes: a systematic-review and meta-analysis. Sports Med 2015; 45: 365-378
- 15 Flueck JL. Hartmann K. Strupler M. et al. Vitamin D deficiency in Swiss elite wheelchair athletes. Spinal Cord 2016; DOI: 10.1038/sc.2016.33.
- 16 Valtuena J. Dominguez D. Til L. et al. High prevalence of vitamin D insufficiency among elite Spanish athletes the importance of outdoor training adaptation. Nutr Hosp 2014; 30: 124-131
- 17 Halliday TM. Peterson NJ. Thomas JJ. et al. Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. Med Sci Sports Exerc 2011; 43: 335-343
- 18 Deutsche Gesellschaft für Ernährung. 2012 Im Internet: https://www.dge.de/wissenschaft/referenzwerte/vitamin-d/ Stand: 02.08.2016
- 19 Webb AR. Kline L. Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 1988; 67: 373-378
- 20 Matsuoka LY. Ide L. Wortsman J. et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 1987; 64: 1165-1168
- 21 Osmancevic A. Gillstedt M. Landin-Wilhelmsen K. et al. Size of the exposed body surface area, skin erythema and body mass index predict skin production of vitamin D. J Photochem Photobiol B 2015; 149: 224-229
- 22 Ronge HE. Increase of physical effectiveness by systematic ultraviolet irradiation. Strahlentherapie 1952; 88: 563-566
- 23 Cannell JJ. Hollis BW. Sorenson MB. et al. Athletic performance and vitamin D. Med Sci Sports Exerc 2009; 41: 1102-1110
- 24 Wyon MA. Koutedakis Y. Wolman R. et al. The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: a controlled study. J Sci Med Sport 2014; 17: 8-12
- 25 Kalliokoski P. Bergqvist Y. Lofvander M. Physical performance and 25-hydroxyvitamin D: a cross-sectional study of pregnant Swedish and Somali immigrant women and new mothers. BMC Pregnancy Childbirth 2013; 13: 237
- 26 Sato Y. Iwamoto J. Kanoko T. et al. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 2005; 20: 187-192
- 27 Halson SL. Jeukendrup AE. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 2004; 34: 967-981
- 28 Ceglia L. Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int 2013; 92: 151-162
- 29 Shuler FD. Wingate MK. Moore GH. et al. Sports health benefits of vitamin d. Sports Health 2012; 4: 496-501
- 30 Fitzgerald JS. Peterson BJ. Warpeha JM. et al. Association Between Vitamin D Status and Maximal-Intensity Exercise Performance in Junior and Collegiate Hockey Players. J Strength Cond Res 2015; 29: 2513-2521
- 31 Pfeifer M. Kohlwey L. Begerow B. et al. Effects of two newly developed spinal orthoses on trunk muscle strength, posture, and quality-of-life in women with postmenopausal osteoporosis: a randomized trial. Am J Phys Med Rehabil 2011; 90: 805-815
- 32 Close GL. Russell J. Cobley JN. et al. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci 2013; 31: 344-353
- 33 Owens DJ. Webber D. Impey SG. et al. Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males. Eur J Appl Physiol 2014; 114: 1309-1320
- 34 Dubnov-Raz G. Livne N. Raz R. et al. Vitamin D Supplementation and Physical Performance in Adolescent Swimmers. Int J Sport Nutr Exerc Metab 2015; 25: 317-325
- 35 Bischoff-Ferrari HA. Borchers M. Gudat F. et al. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 2004; 19: 265-269
- 36 Dawson-Hughes B. Mithal A. Bonjour JP. et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos Int 2010; 21: 1151-1154
- 37 Stratos I. Li Z. Herlyn P. et al. Vitamin D increases cellular turnover and functionally restores the skeletal muscle after crush injury in rats. Am J Pathol 2013; 182: 895-904
- 38 Barker T. Schneider ED. Dixon BM. et al. Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr Metab (Lond) 2013; 10: 69
- 39 Redzic M. Lewis RM. Thomas DT. Relationship between 25-hydoxyvitamin D, muscle strength, and incidence of injury in healthy adults: a systematic review. Nutr Res 2013; 33: 251-258
- 40 Davey T. Lanham-New SA. Shaw AM. et al. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos Int 2016; 27: 171-179
- 41 Warden SJ. Burr DB. Brukner PD. Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep 2006; 4: 103-109
- 42 Ruohola JP. Laaksi I. Ylikomi T. et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res 2006; 21: 1483-1488
- 43 Dao D. Sodhi S. Tabasinejad R. et al. Serum 25-Hydroxyvitamin D Levels and Stress Fractures in Military Personnel: A Systematic Review and Meta-analysis. Am J Sports Med 2015; 43: 2064-2072
- 44 Breer S. Krause M. Marshall RP. et al. Stress fractures in elderly patients. Int Orthop 2012; 36: 2581-2587
- 45 Lappe J. Cullen D. Haynatzki G. et al. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res 2008; 23: 741-749
- 46 Burgi AA. Gorham ED. Garland CF. et al. High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J Bone Miner Res 2011; 26: 2371-2377
- 47 Pludowski P. Holick MF. Pilz S. et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev 2013; 12: 976-989
- 48 Martineau AR. Wilkinson RJ. Wilkinson KA. et al. A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med 2007; 176: 208-213
- 49 Heaney RP. Vitamin D in health and disease. Clin J Am Soc Nephrol 2008; 3: 1535-1541
- 50 Zittermann A. Vitamin D and cardiovascular disease. Anticancer Res 2014; 34: 4641-4648
- 51 Hathcock JN. Shao A. Vieth R. et al. Risk assessment for vitamin D. Am J Clin Nutr 2007; 85: 6-18
- 52 Bacon CJ. Gamble GD. Horne AM. et al. High-dose oral vitamin D3 supplementation in the elderly. Osteoporos Int 2009; 20: 1407-1415
- 53 van den Ouweland J. Fleuren H. Drabbe M. et al. Pharmacokinetics and safety issues of an accidental overdose of 2000000 IU of vitamin D3 in two nursing home patients: a case report. BMC Pharmacol Toxicol 2014; 15: 57
- 54 Vieth R. Vitamin D toxicity, policy, and science. J Bone Miner Res 2007; 22 (Suppl. 02) V64-V68