RSS-Feed abonnieren
DOI: 10.1055/s-0042-121899
Patients with ultrasound diagnosis of hepatic steatosis are at high metabolic risk
Patienten mit durch Ultraschall diagnostizierter hepatischer Steatose haben ein hohes metabolisches RisikoPublikationsverlauf
15. Juli 2016
21. November 2016
Publikationsdatum:
09. Dezember 2016 (online)
Abstract
Background and aims: Hepatic steatosis is the basis of non-alcoholic fatty liver disease (NALFD). Mere fat accumulation within hepatocytes is considered the mild form of NAFLD, but can progress in some patients to advanced steatohepatitis (NASH), which may lead to fibrosis, cirrhosis or hepatocellular carcinoma. However, even hepatic steatosis alone may be a risk factor for cardiovascular disease (CVD).
Patients and methods: In the present real life study 106 patients from the outpatient clinic of the Department for Gastroenterology and Hepatology with either NAFLD (n = 60) or other typical diagnoses (n = 46) were included. Ultrasound examination identified 77 patients with hepatic steatosis. Liver enzymes, lipid profile, surrogate cell death markers, and adiponectin were determined. Transient elastography (Fibroscan®) and bioelectrical impedance analysis (BIA) were performed.
Results: Mean patient age was 46 years (23 – 62) for non-NAFLD and 53 years (18 – 71) for the NAFLD group. ALT and AST did not differ significantly between the two groups. Adiponectin and HDL were significantly lower in NAFLD (p < 0.05) and BIA profiles showed higher fat and fat free mass. Non-NAFLD patients with steatosis also exhibited an adverse metabolic profile. Overall steatosis was associated with factors of metabolic syndrome (MS) and CVD. Prevalence of CVD and factors of MS hint to steatosis as an early event for these conditions.
Conclusion: Patients with steatosis are at higher cardiovascular and metabolic risk without differences in transaminases levels compared to those without steatosis. Steatosis diagnosed by ultrasound needs to rise attention for further metabolic alterations including CVD.
Zusammenfassung
Hintergrund und Ziele: Fettakkumulation (Steatose) in der Leberzelle stellt die Grundlage der nicht-alkoholischen Fettlebererkrankung (NAFLE) dar. Die einfache Steatose bei Hepatozyten wird als milde Form der NAFLE betrachtet, kann jedoch zur progressiv-entzündlichen Form, der Steatohepatitis (NASH), übergehen. Die NASH kann über Fibrose weiter zur Zirrhose oder zu einem hepatozellulären Karzinom (HCC) führen. Dennoch stellt bereits die einfache Steatose ein Risiko für Herzkreislauferkrankungen (KHK) dar.
Patienten und Methodik: In der aktuellen Studie wurden 106 Patienten aus einer gastroenterologischen und hepatologischen Ambulanz untersucht, sowohl mit bekannter NAFLE (n = 60) oder anderen typischen Diagnosen (n = 46). Mittels Sonografie wurde bei 77 Patienten eine Steatosis hepatis diagnostiziert. Leberenzyme, Lipidprofil, Surrogatmarker des Zelltodes und Adiponektin wurden bestimmt. Transiente Elastografie (Fibroscan®) und Bioimpedanzanalyse (BIA) wurden durchgeführt.
Ergebnisse: Das mittlere Alter der Patienten lag bei 46 Jahren (23 – 62; nicht-NAFLE) bzw. bei 53 Jahren (18 – 71; NAFLE). AST und ALT zeigten keine signifikanten Unterschiede zwischen den Gruppen. Adiponektin und HDL waren signifikant niedriger bei NAFLE (p < 0,05) und BIA-Profile zeigten sowohl höhere Fett- als auch fettfreie Masse. Auch nicht-NAFLE Patienten mit Steatose wiesen ein deutlich verändertes metabolisches Profil auf. Insgesamt war Steatose häufiger mit Faktoren des metabolischen Syndroms (MS) und mit KHK assoziiert. Die Prävalenzen der KHK und Faktoren des MS weisen darauf hin, dass Leber-Steatose ein frühes Ereignis bei der Entwicklung dieser Erkrankungen darstellt.
Zusammenfassung: Patienten mit Leber-Steatose haben ein deutlich höheres kardiovaskuläres und metabolisches Risiko, ohne Veränderung der Transaminasen im Vergleich zu Patienten ohne Steatose. sonografisch diagnostizierte Steatose sollte die Aufmerksamkeit für weitere metabolische Veränderungem, inklusive KHK, erhöhen.
-
References
- 1 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221-1231
- 2 Day CP, James OF. Steatohepatitis: a tale of two ‘hits’?. Gastroenterology 1998; 114: 842-845
- 3 Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatol Baltim Md 2010; 52: 1836-1846
- 4 Bhala N, Jouness RIK, Bugianesi E. Epidemiology and natural history of patients with NAFLD. Curr Pharm Des 2013; 19: 5169-5176
- 5 Lazo M, Hernaez R, Eberhardt MS et al. Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol 2013; 178: 38-45
- 6 Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014; 28: 637-653
- 7 Bechmann LP, Hannivoort RA, Gerken G et al. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 2012; 56: 952-964
- 8 Vanni E, Bugianesi E, Kotronen A et al. From the metabolic syndrome to NAFLD or vice versa?. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver 2010; 42: 320-330
- 9 Siddiqui MS, Sterling RK, Luketic VA et al. Association between high-normal levels of alanine aminotransferase and risk factors for atherogenesis. Gastroenterology 2013; 145: 1271-1279-3
- 10 Ahmed MH, Barakat S, Almobarak AO. Nonalcoholic fatty liver disease and cardiovascular disease: has the time come for cardiologists to be hepatologists?. J Obes 2012; 2012: 483135
- 11 Hamaguchi M, Kojima T, Itoh Y et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am J Gastroenterol 2007; 102: 2708-2715
- 12 Cohen EB, Afdhal NH. Ultrasound-based hepatic elastography: origins, limitations, and applications. J Clin Gastroenterol 2010; 44: 637-645
- 13 Kyle UG, Bosaeus I, De Lorenzo AD et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr Edinb Scotl 2004; 23: 1226-1243
- 14 Feldstein AE, Wieckowska A, Lopez AR et al. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatol Baltim Md 2009; 50: 1072-1078
- 15 Kälsch J, Bechmann LP, Kälsch H et al. Evaluation of Biomarkers of NAFLD in a Cohort of Morbidly Obese Patients. J Nutr Metab 2011; 2011: 369168
- 16 Bantel H, Lügering A, Heidemann J et al. Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatol Baltim Md 2004 Nov 40: 1078-1087
- 17 Joka D, Wahl K, Moeller S et al. Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatol Baltim Md 2012; 55: 455-464
- 18 Berg AH, Combs TP, Du X et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7: 947-953
- 19 Arita Y, Kihara S, Ouchi N et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79-83
- 20 IDF Worldwide Definition of the Metabolic Syndrome [Internet]. Int. Diabetes Fed. [cited 2016 Jul 7]. Available from: http://www.idf.org/metabolic-syndrome
- 21 Kontush A. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 2014; 103: 341-349
- 22 Pais R, Giral P, Khan JF et al. Fatty liver is an independent predictor of early carotid atherosclerosis. J Hepatol 2016; 65: 95-102
- 23 Saadeh S, Younossi ZM, Remer EM et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002; 123: 745-750
- 24 Bedossa P, Poitou C, Veyrie N et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatol Baltim Md 2012; 56: 1751-1759
- 25 Kleiner DE, Brunt EM, Van Natta M et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatol Baltim Md 2005; 41: 1313-1321
- 26 Kälsch J, Bechmann LP, Heider D et al. Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort. Sci Rep 2015; 5: 13058
- 27 Kim HY, Kim CW, Lee CD et al. Can ‘healthy’ normal alanine aminotransferase levels identify the metabolically obese phenotype? Findings from the Korea national health and nutrition examination survey 2008–2010. Dig Dis Sci 2014; 59: 1330-1337
- 28 Moll R, Franke WW, Schiller DL et al. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31: 11-24
- 29 Canbay A, Feldstein A, Kronenberger B et al. Cytokeratin 18 as marker for non-invasive diagnosis and prognosis of acute and chronic liver diseases. Z Für Gastroenterol 2014; 52: 290-295
- 30 Yamauchi T, Kamon J, Minokoshi Y et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288-1295
- 31 Fabbrini E, Magkos F, Mohammed BS et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA 2009; 106: 15430-15435
- 32 Snel M, Jonker JT, Schoones J et al. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol 2012; 2012: 983814