Subscribe to RSS
DOI: 10.1055/s-0042-123615
SPECT/CT in der Nuklearkardiologischen Bildgebung
SPECT/CT in Myocardial Perfusion ImagingPublication History
Publication Date:
25 April 2017 (online)
Zusammenfassung
Neue Entwicklungen sowohl hardware- als auch softwareseitig haben in den letzten Jahren dazu beigetragen, dass Methoden der Hybridbildgebung auch in der nuklearkardiologischen Klinik Einzug halten. Die myokardiale Perfusions-SPECT/CT eröffnet neue Möglichkeiten der Schwächungs- und Streustrahlungskorrektur, was Zugewinne in der diagnostischen Genauigkeit und Sicherheit erbringt. Die gleichzeitige Evaluierung der koronaren Kalklast sowie der myokardialen Perfusion kann bei unauffälligem Befund eine KHK mit großer Sicherheit ausschließen und verbessert gleichzeitig die Identifizierung von Hochrisikopatienten. Die Fusion von computertomografisch dargestellten arteriellen Koronarbäumen mit funktionellen SPECT-Perfusionsdaten verbessert die Zuordnung von ischämischen Herzmuskelarealen zu den entsprechenden Gefäßversorgungsarealen und erleichtert die Identifizierung von hämodynamisch relevanten Stenosen und potenziell vulnerablen Gefäßplaques. Sensitivität und Spezifität der Einzeluntersuchungen verbessern sich synergistisch. Die Überlagerung der venösen myokardialen Gefäßanatomie mit Perfusionskarten des linken Ventrikels kann bei der Planung zur gezielten Einbringung von Schrittmachersonden wertvolle Informationen liefern, mittels gated-SPECT und Phasenanalyse ist es zudem möglich, geeignete Patientenkollektive zu selektionieren. Postinterventionell können mittels Hybridbildgebung das Therapieansprechen evaluiert und ggf. Korrekturen vorgenommen werden.
Schließlich erlauben Fortschritte auf den Gebieten der Schwächungs- und Streustrahlungskorrektur und der Rekonstruktion von SPECT-Perfusionsdatensätzen eine absolute Quantifizierung des myokardialen Blutflusses und der myokardialen Flussreserve sowie des myokardialen Tracer-Uptakes, was neue Möglichkeiten v.a. der Detektion von Hochrisikopatienten eröffnen wird.
Durch die Hybridbildgebung wird die lange etablierte myokardiale Perfusionsszintigrafie ihren herausragenden Stellenwert bei der Diagnose und der Risikostratifizierung der KHK weiter behaupten und ausbauen können.
Abstract
Recent advances in hardware and software development have contributed to the increasing importance of hybrid imaging techniques in nuclear cardiology over the last few years.
Myocardial perfusion SPECT/CT opens up new possibilities for attenuation and scatter correction, which leads to gains in diagnostic accuracy and safety. The simultaneous evaluation of the coronary plaque burden as well as the myocardial perfusion can exclude CAD with high certainty in case of inconspicuous findings and at the same time improves the identification of high-risk patients. The concomitant use of myocardial SPECT and contrast enhanced arterial CT coronary angiography allows the fusion of coronary trees with functional SPECT-perfusion data and improves the attribution of ischemic heart muscle to the corresponding vessel territories. Furthermore, it facilitates the identification of hemodynamically relevant stenoses and potentially vulnerable plaques. Sensitivity and specificity of the individual examinations are improved through the synergistic effects of hybrid imaging. The fusion of myocardial venous anatomy with perfusion maps of the left ventricle can provide valuable information for guiding cardiac resynchronization therapy. Gated-SPECT and phase analysis can facilitate the selection of suitable patient cohorts. Hybrid imaging can be employed for therapy monitoring and outcome evaluation after interventions.
Finally, advances in the fields of attenuation and scatter correction as well as improved construction algorithms of SPECT perfusion data allow for the absolute quantification of myocardial blood flow and myocardial flow reserve as well as myocardial tracer uptake. This might offer new possibilities for the detection of high-risk patients.
Due to hybrid imaging, the long established method of myocardial perfusion scintigraphy will likely be able to further assert and extend its outstanding value in the diagnosis and risk stratification of CAD patients.
-
Literatur
- 1 Achenbach S, Marwan M, Ropers D. et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 2010; 31: 340-346
- 2 Alhassen F, Nguyen N, Bains S. et al. Myocardial blood flow measurement with a conventional dual-head SPECT/CT with spatiotemporal iterative reconstructions – a clinical feasibility study. Am J Nucl Med Mol Imaging 2013; 4: 53-59
- 3 Arumugam P, Harbinson M, Reyes E. et al. Procedure guidelines for radionuclide myocardial perfusion imaging with single-photon emission computed tomography. Nucl Med Commun 2013; 34: 813-826
- 4 Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 2014; 41 (Suppl. 01) S17-S25
- 5 Baron KB, Choi AD, Chen MY. Low Radiation Dose Calcium Scoring: Evidence and Techniques. Curr Cardiovasc Imaging Rep 2016; 9: 12
- 6 Bellasi A, Lacey C, Taylor AJ. et al. Comparison of prognostic usefulness of coronary artery calcium in men versus women (results from a meta- and pooled analysis estimating all-cause mortality and coronary heart disease death or myocardial infarction). Am J Cardiol 2007; 100: 409-414
- 7 Brodov Y, Gransar H, Dey D. et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med 2015; 56: 1345-1350
- 8 Budoff MJ, Diamond GA, Raggi P. et al. Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 2002; 105: 1791-1796
- 9 Budoff MJ, Dowe D, Jollis JG. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008; 52: 1724-1732
- 10 Budoff MJ, Shaw LJ, Liu ST. et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25 253 patients. J Am Coll Cardiol 2007; 49: 1860-1870
- 11 Buechel RR, Husmann L, Herzog BA. et al. Low-dose computed tomography coronary angiography with prospective electrocardiogram triggering: feasibility in a large population. J Am Coll Cardiol 2011; 57: 332-336
- 12 Buechel RR, Pazhenkottil AP, Herzog BA. et al. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera. Eur J Nucl Med Mol Imaging 2010; 37: 1903-1908
- 13 Cademartiri F, Schuijf JD, Mollet NR. et al. Multislice CT coronary angiography: how to do it and what is the current clinical performance?. Eur J Nucl Med Mol Imaging 2005; 32: 1337-1347
- 14 Cerqueira MD, Allman KC, Ficaro EP. et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. Journal of Nuclear Cardiology: official publication of the American Society of Nuclear Cardiology 2010; 17: 709-718
- 15 Chang SM, Nabi F, Xu J. et al. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010; 55: 221-230
- 16 Chen J, Caputlu-Wilson SF, Shi H. et al. Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol 2006; 13: 43-49
- 17 Detrano R, Guerci AD, Carr JJ. et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. The New England Journal of Medicine 2008; 358: 1336-1345
- 18 Dey D, Schepis T, Marwan M. et al. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US. Radiology 2010; 257: 516-522
- 19 Di Carli MF, Dorbala S, Curillova Z. et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 2007; 14: 799-809
- 20 Diaz-Zamudio M, Fuchs TA, Slomka P. et al. Quantitative plaque features from coronary computed tomography angiography to identify regional ischemia by myocardial perfusion imaging. Eur Heart J Cardiovasc Imaging 2016;
- 21 Duvall WL, Sweeny JM, Croft LB. et al. Comparison of high efficiency CZT SPECT MPI to coronary angiography. J Nucl Cardiol 2011; 18: 595-604
- 22 Duvall WL, Wijetunga MN, Klein TM. et al. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study. J Nucl Cardiol 2010; 17: 370-377
- 23 Engbers EM, Timmer JR, Ottervanger JP et al. Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients. Circ Cardiovasc Imaging 2016; 9:
- 24 Flotats A, Knuuti J, Gutberlet M. et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 2011; 38: 201-212
- 25 Gaemperli O, Bengel FM, Kaufmann PA. Cardiac hybrid imaging. Eur Heart J 2011; 32: 2100-2108
- 26 Genovesi D, Giorgetti A, Gimelli A. et al. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs. Gated) study. Eur J Nucl Med Mol Imaging 2011; 38: 1890-1898
- 27 Goetze S, Brown TL, Lavely WC. et al. Attenuation correction in myocardial perfusion SPECT/CT: effects of misregistration and value of reregistration. J Nucl Med 2007; 48: 1090-1095
- 28 Greenland P, Alpert JS, Beller GA. et al. 2010; ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2010; 122: e584-e636
- 29 Greenland P, Bonow RO, Brundage BH. et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 2007 49: 378-402
- 30 Haberl R, Becker A, Leber A. et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1 764 patients. J Am Coll Cardiol 2001; 37: 451-457
- 31 Hachamovitch R, Berman DS, Shaw LJ. et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998; 97: 535-543
- 32 Hachamovitch R, Hayes SW, Friedman JD. et al. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003; 107: 2900-2907
- 33 Hacker M, Jakobs T, Hack N. et al. Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging 2007; 34: 4-10
- 34 Hoffmann U, Ferencik M, Cury RC. et al. Coronary CT angiography. J Nucl Med 2006; 47: 797-806
- 35 Hsu B, Chen FC, Wu TC. et al. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging 2014; 41: 2294-2306
- 36 Javadi MS, Lautamaki R, Merrill J. et al. Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med 2010; 51: 198-203
- 37 Kaufmann PA, Buechel RR. Cardiac SPECT/CCTA hybrid imaging: One answer to two questions?. Herz 2016; 41: 391-397
- 38 Kennedy JA, Israel O, Frenkel A. Directions and magnitudes of misregistration of CT attenuation-corrected myocardial perfusion studies: incidence, impact on image quality, and guidance for reregistration. J Nucl Med 2009; 50: 1471-1478
- 39 Kirisli HA, Gupta V, Shahzad R. et al. Additional diagnostic value of integrated analysis of cardiac CTA and SPECT MPI using the SMARTVis system in patients with suspected coronary artery disease. J Nucl Med 2014; 55: 50-57
- 40 Lehner S, Sussebach C, Todica A. et al. Influence of SPECT attenuation correction on the quantification of hibernating myocardium as derived from combined myocardial perfusion SPECT and (1)(8)F-FDG PET. J Nucl Cardiol 2014; 21: 578-587
- 41 Lindner O, Burchert W, Hacker M. et al. Myocardial perfusion scintigraphy – short form of the German guideline. Nuklearmedizin 2013; 52: 51-63; quiz N22
- 42 Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007; 48: 661-673
- 43 Masood Y, Liu YH, Depuey G. et al. Clinical validation of SPECT attenuation correction using X-ray computed tomography-derived attenuation maps: multicenter clinical trial with angiographic correlation. J Nucl Cardiol 2005; 12: 676-686
- 44 Mc Ardle BA, Dowsley TF, deKemp RA. et al. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: A systematic review and meta-analysis. J Am Coll Cardiol 2012; 60: 1828-1837
- 45 Meijboom WB, Meijs MF, Schuijf JD. et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 2008; 52: 2135-2144
- 46 Moody WE, Lin EL, Stoodley M. et al. Prognostic utility of calcium scoring as an adjunct to stress myocardial perfusion scintigraphy in end-stage renal disease. Am J Cardiol 2016; 117: 1387-1396
- 47 Murthy VL, Naya M, Foster CR. et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011; 124: 2215-2224
- 48 Nakahara T, Iwabuchi Y, Murakami K. Diagnostic performance of 3D bull’s eye display of SPECT and coronary CTA fusion. JACC Cardiovasc Imaging 2016; 9: 703-711
- 49 Nkoulou R, Pazhenkottil AP, Kuest SM. et al. Semiconductor detectors allow low-dose-low-dose 1-day SPECT myocardial perfusion imaging. J Nucl Med 2011; 52: 1204-1209
- 50 Notghi A, Low CS. Myocardial perfusion scintigraphy: past, present and future. Br J Radiol 2011; 84 Spec No 3 S229-S236
- 51 O’Connor MK, Kemp BJ. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med 2006; 36: 258-266
- 52 Parker MW, Morales DC, Slim HB. et al. A strategy of symptom-limited exercise with regadenoson-as-needed for stress myocardial perfusion imaging: a randomized controlled trial. J Nucl Cardiol 2013; 20: 185-196
- 53 Pazhenkottil AP, Buechel RR, Husmann L. et al. Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging. Heart 2011; 97: 33-37
- 54 Pazhenkottil AP, Nkoulou RN, Ghadri JR. et al. Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography. Eur Heart J 2011; 32: 1465-1471
- 55 Petretta M, Storto G, Pellegrino T. et al. Quantitative assessment of myocardial blood flow with SPECT. Prog Cardiovasc Dis 2015; 57: 607-614
- 56 Preuss R, Weise R, Lindner O. et al. Optimisation of protocol for low dose CT-derived attenuation correction in myocardial perfusion SPECT imaging. Eur J Nucl Med Mol Imaging 2008; 35: 1133-1141
- 57 Rischpler C, Nekolla S, Schwaiger M. PET and SPECT in heart failure. Curr Cardiol Rep 2013; 15: 337
- 58 Ritt P, Vija H, Hornegger J. et al. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 2011; 38 (Suppl. 01) S69-S77
- 59 Rumberger JA, Simons DB, Fitzpatrick LA. et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995; 92: 2157-2162
- 60 Santana CA, Garcia EV, Faber TL. et al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J Nucl Cardiol 2009; 16: 201-211
- 61 Sato A, Nozato T, Hikita H. et al. Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J Nucl Cardiol 2010; 17: 19-26
- 62 Schreurs R, Wiegerinck RF, Prinzen FW. Exploring the electrophysiologic and hemodynamic effects of cardiac resynchronization therapy: From bench to bedside and vice versa. Heart Fail Clin 2017; 13: 43-52
- 63 Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004; 11: 171-185
- 64 Uebleis C, Becker A, Griesshammer I. et al. Stable coronary artery disease: prognostic value of myocardial perfusion SPECT in relation to coronary calcium scoring–long-term follow-up. Radiology 2009; 252: 682-690
- 65 Uebleis C, Groebner M, von Ziegler F. et al. Combined anatomical and functional imaging using coronary CT angiography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery. Int J Cardiovasc Imaging 2012; 28: 1763-1774
- 66 Ueyama T, Takehana K, Maeba H. et al. Prognostic value of normal stress-only technetium-99m myocardial perfusion imaging protocol. Comparison with standard stress-rest protocol. Circ J 2012; 76: 2386-2391
- 67 Uribe CF, Esquinas PL, Tanguay J. et al. Accuracy of 177Lu activity quantification in SPECT imaging: a phantom study. EJNMMI Phys 2017; 4: 2
- 68 Utsunomiya D, Nakaura T, Honda T. et al. Object-specific attenuation correction at SPECT/CT in thorax: optimization of respiratory protocol for image registration. Radiology 2005; 237: 662-669
- 69 van der Hoeven BL, Schalij MJ, Delgado V. Multimodality imaging in interventional cardiology. Nat Rev Cardiol 2012; 9: 333-346
- 70 van Dijk JD, Mouden M, Ottervanger JP. et al. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT. J Nucl Cardiol 2016;
- 71 van Werkhoven JM, Schuijf JD, Gaemperli O. et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 2009; 53: 623-632
- 72 Verberne HJ, Acampa W, Anagnostopoulos C. et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 2015; 42: 1929-1940
- 73 Wang L, Wu D, Yang Y. et al. Avoiding full corrections in dynamic SPECT images impacts the performance of SPECT myocardial blood flow quantitation. J Nucl Cardiol 2016;
- 74 Wells RG, Trottier M, Premaratne M. et al. Single CT for attenuation correction of rest/stress cardiac SPECT perfusion imaging. J Nucl Cardiol 2016;
- 75 Wenning C, Rahbar K, Vrachimis A. et al. Myocardial perfusion imaging and coronary calcium scoring with a two-slice SPECT/CT system: can the attenuation map be calculated from the calcium scoring CT scan?. Eur J Nucl Med Mol Imaging 2013; 40: 1069-1076
- 76 Yuoness SA, Goha AM, Romsa JG. et al. Very high coronary artery calcium score with normal myocardial perfusion SPECT imaging is associated with a moderate incidence of severe coronary artery disease. Eur J Nucl Med Mol Imaging 2015; 42: 1542-1550