Klin Monbl Augenheilkd 2017; 234(10): 1259-1265
DOI: 10.1055/s-0042-123834
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Retinaler Venenverschluss – wann, womit und wie therapieren?

Retinal Vein Occlusion – Which Treatment When?
A. Bajor
Universitätsklinik für Augenheilkunde, Medizinische Hochschule Hannover
,
A. Pielen
Universitätsklinik für Augenheilkunde, Medizinische Hochschule Hannover
,
L. Danzmann
Universitätsklinik für Augenheilkunde, Medizinische Hochschule Hannover
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 19. Oktober 2016

akzeptiert 27. Oktober 2016

Publikationsdatum:
04. April 2017 (online)

Zusammenfassung

Nach neuesten Erkenntnissen ist ein Makulaödem infolge eines retinalen Venenverschlusses am besten mit einer zeitnahen intravitrealen Anti-VEGF-Therapie (Aflibercept, Bevacizumab [off label], Ranibizumab) sicher und effektiv behandelbar. Nach einem anfänglichen Upload von monatlich 3 Injektionen Anti-VEGF sollte in regelmäßigen Kontrollen vor allem OCT-basiert (bevorzugt gegenüber visusbasiert) über eine erneute Injektion entschieden werden. Nach anfänglichen monatlichen Injektionen haben sich derzeit vor allem das „Pro-re-nata“- (PRN) und das „Treat-and-Extend“-Schema in Bezug auf den weiteren Therapieverlauf durchgesetzt. Unter Beachtung des Nebenwirkungsspektrums (insbesondere Kataraktprogression, Augeninnendruckerhöhung) kann auch eine intravitreale Therapie mit einem Dexamethason-Implantat sinnvoll sein. Die Prognose bez. Visus und Rückgang des Makulaödems hängt von einem frühen Behandlungsbeginn mit konsequenter Therapiefortführung ab. Vor Behandlungsbeginn sowie im Verlauf ist eine Fluoresceinangiografie nötig, um ischämische Netzhautareale zu detektieren. Es gibt Hinweise, dass eine frühe gezielte Laserkoagulation ischämischer Netzhautareale die Frequenz der nötigen Injektionen senkt und zu einem besseren Ansprechen des Ödems auf die Therapie führt. Bei signifikanter retinaler Ischämie, die in der Folge zu Proliferationen, Rubeosis iridis und einem Sekundärglaukom führen kann, ist eine Laserbehandlung unumgänglich.

Abstract

According to the latest findings, macular oedema due to retinal vein occlusion is best treated safely and effectively with near-term intravitreal anti-VEGF therapy (aflibercept, bevacizumab [off label], ranibizumab). After an initial upload of 3 monthly injections of anti-VEGF, the decision on re-injection should be based on OCT (rather than on visual acuity). After initial monthly injections, the “pro-re-nata” (PRN) and the “treat-and-extend” regimens have been predominantly used in the further course of therapy. Taking into account the side effect spectrum (in particular cataract progression, increased intraocular pressure), intravitreal therapy with a dexamethasone implant may be a reasonable alternative. The prognosis for visual acuity and the decline in macular oedema depend on starting treatment early and continuing it consistently. Before starting treatment, as well as during treatment, fluorescein angiography is necessary to detect ischemic retinal areas. There is evidence that early targeted laser coagulation of ischemic retina may reduce the frequency of necessary injections and improve the response of the oedema to therapy. Significant retinal ischemia may lead to proliferations, rubeosis iridis and secondary glaucoma and therefore requires laser treatment.

 
  • Literatur

  • 1 Feltgen N, Pielen A. [Retinal vein occlusion: Epidemiology, classification and clinical findings]. Ophthalmologe 2015; 112: 607-618
  • 2 Feltgen N, Pielen A. [Retinal vein occlusion: Therapy of retinal vein occlusion]. Ophthalmologe 2015; 112: 695-704
  • 3 Hayreh SS, Podhajsky PA, Zimmerman MB. Natural history of visual outcome in central retinal vein occlusion. Ophthalmology 2011; 118: 119-133.e2
  • 4 Feltgen N, Pielen A. Hansen Let al. [Intravitreal drug therapy for retinal vein occlusion – pathophysiological mechanisms and routinely used drugs]. Klin Monatsbl Augenheilkd 2010; 227: 681-693
  • 5 Lang G, Lang S. Diagnostik und Therapie retinaler Venenverschlüsse. Klin Monatsbl Augenheilkd 2010; 227: R141-R155
  • 6 Bertelsen M, Linneberg A, Christoffersen N. et al. Mortality in patients with central retinal vein occlusion. Ophthalmology 2014; 121: 637-642
  • 7 Werther W, Chu L, Holekamp N. et al. Myocardial infarction and cerebrovascular accident in patients with retinal vein occlusion. Arch Ophthalmol 2011; 129: 326-331
  • 8 Pielen A, Feltgen N, Isserstedt C. et al. Efficacy and safety of intravitreal therapy in macular edema due to branch and central retinal vein occlusion: a systematic review. PloS One 2013; 8: e78538
  • 9 Stellungnahme der Deutschen Ophthalmologischen Gesellschaft, der Retinologischen Gesellschaft und des Berufsverbands der Augenärzte Deutschlands zur Therapie des Makulaödems beim retinalen Venenverschluss. . 2010; 227: 542-556
  • 10 Coscas G, Loewenstein A, Augustin A. et al. Management of retinal vein occlusion – consensus document. Ophthalmologica 2011; 226: 4-28
  • 11 Berger AR, Cruess AF, Altomare F. et al. Optimal treatment of retinal vein occlusion: Canadian expert consensus. Ophthalmologica 2015; 234: 6-25
  • 12 Haller JA, Bandello F, Belfort R. et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology 2011; 118: 2453-2460
  • 13 Mayer W, Hadjigoli A, Wolf A. et al. Vergleich von intravitrealem Dexamethason-Implantat mit intravitrealem Ranibizumab als Erstbehandlung des Makulaödems bei retinalen venösen Gefäßverschlüssen. Klin Monatsbl Augenheilkd 2015; 232: 1289-1296
  • 14 Huang P, Niu W, Ni Z. et al. A meta-analysis of anti-vascular endothelial growth factor remedy for macular edema secondary to central retinal vein occlusion. PloS One 2013; 8: e82454
  • 15 Mitry D, Bunce C, Charteris D. Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion. Cochrane Database Syst Rev 2013; (01) CD009510
  • 16 Braithwaite T, Nanji AA, Lindsley K. et al. Anti-vascular endothelial growth factor for macular oedema secondary to central retinal vein occlusion. Cochrane Database Syst Rev 2014; (05) CD007325
  • 17 Hattenbach L-O. Efficacy and safety of 0.5 mg Ranibizumab compared with 0.7 mg dexamethasone intravitreal implant in patients with branch retinal vein occlusion over 6 months: The COMRADE-B study. Invest Ophthalmol Vis Sci 2014; 55: 1830
  • 18 Hoerauf H, Feltgen N, Weiss C. et al. Clinical efficacy and safety of ranibizumab versus dexamethasone for central retinal vein occlusion (COMRADE C): A European label study. Am J Ophthalmol 2016; 169: 258-267
  • 19 Meyer CH, Holz FG. Preclinical aspects of anti-VEGF agents for the treatment of wet AMD: ranibizumab and bevacizumab. Eye (Lond) 2011; 25: 661-672
  • 20 Xu L, Lu T, Tuomi L. et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci 2013; 54: 1616-1624
  • 21 Ferrara N, Damico L, Shams N. et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006; 26: 859-870
  • 22 Holash J, Davis S, Papadopoulos N. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 2002; 99: 11393-11398
  • 23 Brown DM, Heier JS, Clark WL. et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am J Ophthalmol 2013; 155: 429-437.e7
  • 24 Papadopoulos N, Martin J, Ruan Q. et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012; 15: 171-185
  • 25 Avery RL, Castellarin AA, Steinle NC. et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol 2014; 98: 1636-1641
  • 26 Campochiaro PA, Brown DM, Awh CC. et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology 2011; 118: 2041-2049
  • 27 Campochiaro PA, Sophie R, Pearlman J. et al. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab. Ophthalmology 2014; 121: 209-219
  • 28 Wecker T, Ehlken C, Bühler A. et al. Five-year visual acuity outcomes and injection patterns in patients with pro-re-nata treatments for AMD, DME, RVO and myopic CNV. Br J Ophthalmol 2016;
  • 29 Chin-Yee D, Eck T, Fowler S. et al. A systematic review of as needed versus treat and extend ranibizumab or bevacizumab treatment regimens for neovascular age-related macular degeneration. Br J Ophthalmol 2015;
  • 30 Rayess N, Houston SKS, Gupta OP. et al. Treatment outcomes after 3 years in neovascular age-related macular degeneration using a treat-and-extend regimen. Am J Ophthalmol 2015; 159: 3-8.e1
  • 31 Campochiaro PA, Wykoff CC, Singer M. et al. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusion: the SHORE study. Ophthalmology 2014; 121: 2432-2442
  • 32 Clark WL, Boyer DS, Heier JS. et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: 52-week results of the VIBRANT study. Ophthalmology 2016; 123: 330-336
  • 33 Larsen M, Waldstein SM, Boscia F. et al. Individualized ranibizumab regimen driven by stabilization criteria for central retinal vein occlusion: twelve-month results of the CRYSTAL Study. Ophthalmology 2016; 123: 1101-1111
  • 34 Pielen A, Mirshahi A, Feltgen N. et al. Ranibizumab for branch retinal vein occlusion associated macular edema study (RABAMES): six-month results of a prospective randomized clinical trial. Acta Ophthalmol 2015; 93: e29-e37
  • 35 Wang K, Wang Y, Gao L. et al. Dexamethasone inhibits leukocyte accumulation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing vascular endothelial growth factor and intercellular adhesion molecule-1 expression. Biol Pharm Bull 2008; 31: 1541-1546
  • 36 McAllister IL, Vijayasekaran S, Chen SD. et al. Effect of triamcinolone acetonide on vascular endothelial growth factor and occludin levels in branch retinal vein occlusion. Am J Ophthalmol 2009; 147: 838-846
  • 37 Kunikata H, Shimura M, Nakazawa T. et al. Chemokines in aqueous humour before and after intravitreal triamcinolone acetonide in eyes with macular oedema associated with branch retinal vein occlusion. Acta Ophthalmol 2012; 90: 162-167
  • 38 Ip MS, Scott IU, VanVeldhuisen PC. et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch Ophthalmol 2009; 127: 1101-1114
  • 39 Scott IU, Ip MS, VanVeldhuisen PC. et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol 2009; 127: 1115-1128
  • 40 Haller JA, Bandello F, Belfort R. et al. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 2010; 117: 1134-1146.e3
  • 41 Jain N, Stinnett SS, Jaffe GJ. Prospective study of a fluocinolone acetonide implant for chronic macular edema from central retinal vein occlusion: thirty-six-month results. Ophthalmology 2012; 119: 132-137
  • 42 Jeanneteau F, Garabedian MJ, Chao MV. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc Natl Acad Sci U S A 2008; 105: 4862-4867
  • 43 Augustin AJ, Holz FG, Haritoglou C. et al. Retrospective, observational study in patients receiving a dexamethasone intravitreal implant 0.7 mg for macular oedema secondary to retinal vein occlusion. Ophthalmologica 2015; 233: 18-26
  • 44 Schmitz K, Maier M, Clemens CR. et al. [Reliability and safety of intravitreal Ozurdex injections. The ZERO study]. Ophthalmologe 2014; 111: 44-52
  • 45 [Anonymous] Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Branch Vein Occlusion Study Group. Arch Ophthalmol 1986; 104: 34-41
  • 46 [Anonymous] A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report. Ophthalmology 1995; 102: 1434-1444
  • 47 Tomomatsu Y, Tomomatsu T, Takamura Y. et al. Comparative study of combined bevacizumab/targeted photocoagulation vs. bevacizumab alone for macular oedema in ischaemic branch retinal vein occlusions. Acta Ophthalmol 2016; 94: e225-e230
  • 48 Rehak M, Tilgner E, Franke A. et al. Early peripheral laser photocoagulation of nonperfused retina improves vision in patients with central retinal vein occlusion (Results of a proof of concept study). Graefes Arch Clin Exp Ophthalmol 2014; 252: 745-752
  • 49 Campochiaro PA, Hafiz G, Mir TA. et al. Scatter photocoagulation does not reduce macular edema or treatment burden in patients with retinal vein occlusion: The RELATE Trial. Ophthalmology 2015; 122: 1426-1437