RSS-Feed abonnieren
DOI: 10.1055/s-0042-1745860
Cardiovascular Considerations in Patients with Liver Cirrhosis
Abstract
Liver cirrhosis is a significant cause of morbidity and mortality and can result in alterations to cardiac function. Patients with cirrhosis may develop a hyperdynamic circulation. Furthermore, systolic or diastolic function may occur, although diastolic function is more common. The transjugular intraheptic portosystemic shunt (TIPS) is an increasingly prominent procedure to treat portal hypertension that can result in transient worsening of hyperdynamic circulation. TIPS can be complicated by cardiac decompensation, with diastolic dysfunction playing a key role. Investigators developed an algorithm to stratify risk of cardiac decompensation after TIPS using natriuretic peptide levels and echocardiography. Eighty percent of patients with aortic stenosis decompensated after TIPS in one cohort, but this requires further study before it is considered a contraindication. Cirrhosis has also been linked to development of atrial fibrillation, although data remain mixed. The first-choice anticoagulant should be direct oral anticoagulants, as studies show superior outcomes to warfarin. QTc prolongation is often seen in patients with cirrhosis, theoretically predisposing to ventricular arrhythmias, however the clinical significance remains unclear. The impact of TIPS on arrhythmia is understudied, but small cohorts found high rates. Overall, cirrhosis can have significant impacts of cardiac function and clinicians must be aware of these alterations.
Publikationsverlauf
Eingereicht: 30. Oktober 2021
Angenommen: 24. Januar 2022
Artikel online veröffentlicht:
23. Mai 2022
© 2022. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Lozano R, Naghavi M, Foreman K. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859): www.thelancet.com Accessed September 24, 2021 2095-2128
- 2 Zardi EM, Abbate A, Zardi DM. et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol 2010; 56 (07) 539-549
- 3 Somani PO, Contractor Q, Chaurasia AS, Rathi PM. Diastolic dysfunction characterizes cirrhotic cardiomyopathy. Indian Heart J 2014; 66 (06) 649-655
- 4 Mozos I. Arrhythmia risk in liver cirrhosis. World J Hepatol 2015; 7 (04) 662-672
- 5 Billey C, Billet S, Robic MA. et al. A Prospective Study Identifying Predictive Factors of Cardiac Decompensation After Transjugular Intrahepatic Portosystemic Shunt: The Toulouse Algorithm. Hepatology 2019; 70 (06) 1928-1941
- 6 Møller S, Hobolth L, Winkler C, Bendtsen F, Christensen E. Determinants of the hyperdynamic circulation and central hypovolaemia in cirrhosis. Gut 2011; 60 (09) 1254-1259
- 7 Villanueva C, Albillos A, Genescà J. et al. Development of hyperdynamic circulation and response to β-blockers in compensated cirrhosis with portal hypertension. Hepatology 2016; 63 (01) 197-206
- 8 Møller S, Bendtsen F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int 2018; 38 (04) 570-580
- 9 Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 2014; 61 (04) 912-924
- 10 Iwakiri Y, Kim MY. Nitric oxide in liver diseases. Trends Pharmacol Sci 2015; 36 (08) 524-536
- 11 Møller S, Bendtsen F, Henriksen JH. Determinants of the renin-angiotensin-aldosterone system in cirrhosis with special emphasis on the central blood volume. Scand J Gastroenterol 2006; 41 (04) 451-458
- 12 Jiménez W, Rodés J. Impaired responsiveness to endogenous vasoconstrictors and endothelium-derived vasoactive factors in cirrhosis. Gastroenterology 1994; 107 (04) 1201-1203
- 13 Wong F, Girgrah N, Graba J, Allidina Y, Liu P, Blendis L. The cardiac response to exercise in cirrhosis. Gut 2001; 49 (02) 268-275
- 14 Epstein SK, Ciubotaru RL, Zilberberg MD. et al. Analysis of impaired exercise capacity in patients with cirrhosis. Dig Dis Sci 1998; 43 (08) 1701-1707
-
15 Grose RD, Nolan J, Dillon JF, et al. Exercise-induced left ventricular dysfunction in alcoholic and non-alcoholic cirrhosis. Journal of Hepatology 1995;22(3):326-332. Doi: 10.1016/0168-8278(95)80286-x.
- 16 Sampaio F, Pimenta J, Bettencourt N. et al. Systolic and diastolic dysfunction in cirrhosis: a tissue-Doppler and speckle tracking echocardiography study. Liver Int 2013; 33 (08) 1158-1165
- 17 Dahl EK, Møller S, Kjær A, Petersen CL, Bendtsen F, Krag A. Diastolic and autonomic dysfunction in early cirrhosis: a dobutamine stress study. Scand J Gastroenterol 2014; 49 (03) 362-372
- 18 Møller S, Wiese S, Halgreen H, Hove JD. Diastolic dysfunction in cirrhosis. Heart Fail Rev 2016; 21 (05) 599-610
- 19 Møller S, Henriksen JH. Cardiovascular complications of cirrhosis. Gut 2008; 57 (02) 268-278
- 20 Pozzi M, Carugo S, Boari G. et al. Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology 1997; 26 (05) 1131-1137
- 21 Torregrosa M, Aguadé S, Dos L. et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol 2005; 42 (01) 68-74
- 22 Colombato LA, Spahr L, Martinet J-P. et al. Haemodynamic adaptation two months after transjugular intrahepatic portosystemic shunt (TIPS) in cirrhotic patients. Gut 1996; 39 (04) 600-604
- 23 Busk TM, Bendtsen F, Poulsen JH. et al. Transjugular intrahepatic portosystemic shunt: impact on systemic hemodynamics and renal and cardiac function in patients with cirrhosis. Am J Physiol Gastrointest Liver Physiol 2018; 314 (02) G275-G286
- 24 Kovács A, Schepke AM, Heller AJ, Schild AHH, Flacke AS. Short-Term Effects of Transjugular Intrahepatic Shunt on Cardiac Function Assessed by Cardiac MRI: Preliminary Results. Clin Invest; 2009
- 25 Merli M, Valeriano V, Funaro S. et al. Modifications of cardiac function in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt (TIPS). Am J Gastroenterol 2002; 97 (01) 142-148
- 26 Huonker M, Schumacher YO, Ochs A, Sorichter S, Keul J, Rössle M. Cardiac function and haemodynamics in alcoholic cirrhosis and effects of the transjugular intrahepatic portosystemic stent shunt. Gut 1999; 44 (05) 743-748
- 27 Cazzaniga M, Salerno F, Pagnozzi G. et al. Diastolic dysfunction is associated with poor survival in patients with cirrhosis with transjugular intrahepatic portosystemic shunt. Gut 2007; 56 (06) 869-875
- 28 Modha K, Kapoor B, Lopez R, Sands MJ, Carey W. Symptomatic Heart Failure After Transjugular Intrahepatic Portosystemic Shunt Placement: Incidence, Outcomes, and Predictors. Cardiovasc Intervent Radiol 2018; 41 (04) 564-571
- 29 Baiges A, Garcia-Pagán JC. Predicting Heart Failure After TIPS: Still More Questions Than Answers. Hepatology 2019; 70 (06) 1889-1891
-
30 Zimetbaum P. Atrial fibrillation. Annals of Internal Medicine 2017;166(05). Doi: 10.7326/aitc201703070
- 31 Zamirian M, Sarmadi T, Aghasadeghi K, Kazemi MBS. Liver cirrhosis prevents atrial fibrillation: A reality or just an illusion?. J Cardiovasc Dis Res 2012; 3 (02) 109-112
- 32 Huang WA, Dunipace EA, Sorg JM, Vaseghi M. Liver Disease as a Predictor of New-Onset Atrial Fibrillation. J Am Heart Assoc 2018; 7 (15) e008703
- 33 Mwalitsa JP, Maimone S, Filomia R. et al. Atrial fibrillation in patients with cirrhosis. Liver Int 2016; 36 (03) 395-400
- 34 Lee H, Choi E-K, Rhee T-M. et al. Cirrhosis is a risk factor for atrial fibrillation: A nationwide, population-based study. Liver Int 2017; 37 (11) 1660-1667
- 35 Kang MK, Park JG, Kim MC. Association between Atrial Fibrillation and Advanced Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Yonsei Med J 2020; 61 (10) 860-867
- 36 Park HE, Lee H, Choi S-Y, Kim HS, Chung GE. The risk of atrial fibrillation in patients with non-alcoholic fatty liver disease and a high hepatic fibrosis index. Sci Rep 2020; 10 (01) 5023
- 37 Chokesuwattanaskul R, Thongprayoon C, Bathini T. et al. Epidemiology of atrial fibrillation in patients with cirrhosis and clinical significance: a meta-analysis. Eur J Gastroenterol Hepatol 2019; 31 (04) 514-519
- 38 Huang ZC, Li CQ, Liu XY. et al. Efficacy and Safety of Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Liver Disease: a Meta-Analysis and Systematic Review. Cardiovasc Drugs Ther 2021; 35 (06) 1205-1215
- 39 Violi F, Vestri A, Menichelli D, Di Rocco A, Pastori D, Pignatelli P. Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Advanced Liver Disease: An Exploratory Meta-Analysis. Hepatol Commun 2020; 4 (07) 1034-1040
- 40 Hum J, Shatzel JJ, Jou JH, Deloughery TG. The efficacy and safety of direct oral anticoagulants vs traditional anticoagulants in cirrhosis. Eur J Haematol 2017; 98 (04) 393-397
- 41 Mozos I, Costea C, Serban C, Susan L. Factors associated with a prolonged QT interval in liver cirrhosis patients. J Electrocardiol 2011; 44 (02) 105-108
- 42 Bernardi M, Calandra S, Colantoni A. et al. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology 1998; 27 (01) 28-34
- 43 Zambruni A, Di Micoli A, Lubisco A, Domenicali M, Trevisani F, Bernardi M. QT interval correction in patients with cirrhosis. J Cardiovasc Electrophysiol 2007; 18 (01) 77-82
- 44 Uvelin A, Pejaković J, Mijatović V. Acquired prolongation of QT interval as a risk factor for torsade de pointes ventricular tachycardia: a narrative review for the anesthesiologist and intensivist. J Anesth 2017; 31 (03) 413-423
- 45 Nakasone H, Sugama R, Sakugawa H. et al. Alcoholic liver cirrhosis complicated with torsade de pointes during plasma exchange and hemodiafiltration. J Gastroenterol 2001; 36 (08) 564-568
- 46 Koshy AN, Ko J, Farouque O. et al. Effect of QT interval prolongation on cardiac arrest following liver transplantation and derivation of a risk index. Am J Transplant 2021; 21 (02) 593-603
- 47 Bal JS, Thuluvath PJ. Prolongation of QTc interval: relationship with etiology and severity of liver disease, mortality and liver transplantation. Liver Int 2003; 23 (04) 243-248
- 48 Kim SM, George B, Alcivar-Franco D. et al. QT prolongation is associated with increased mortality in end stage liver disease. World J Cardiol 2017; 9 (04) 347-354
- 49 Kosar F, Ates F, Sahin I, Karincaoglu M, Yildirim B. QT interval analysis in patients with chronic liver disease: a prospective study. Angiology 2007; 58 (02) 218-224
- 50 Li S, Hao X, Liu S, Gong Y, Niu W, Tang Y. Prolonged QTc interval predicts long-term mortality in cirrhosis: a propensity score matching analysis. Scand J Gastroenterol 2021; 56 (05) 570-577
- 51 Główczyńska R, Galas M, Ołdakowska-Jedynak U. et al. Pretransplant QT Interval: The Relationship with Severity and Etiology of Liver Disease and Prognostic Value After Liver Transplantation. Ann Transplant 2018; 23: 622-630
- 52 Zhao J, Qi X, Hou F. et al. Prevalence, Risk Factors and In-hospital Outcomes of QTc Interval Prolongation in Liver Cirrhosis. Am J Med Sci 2016; 352 (03) 285-295
- 53 Pidlich J, Peck-Radosavljevic M, Kranz A. et al. Transjugular intrahepatic portosystemic shunt and cardiac arrhythmias. J Clin Gastroenterol 1998; 26 (01) 39-43
- 54 Vuppalanchi R, Juluri R, Ghabril M. et al. Drug-induced QT prolongation in cirrhotic patients with transjugular intrahepatic portosystemic shunt. J Clin Gastroenterol 2011; 45 (07) 638-642