Subscribe to RSS
DOI: 10.1055/s-0042-1747966
Therapeutic Gases and Inhaled Anesthetics as Adjunctive Therapies in Critically Ill Patients
Abstract
The administration of exogenous oxygen to support adequate gas exchange is the cornerstone of respiratory care. In the past few years, other gaseous molecules have been introduced in clinical practice to treat the wide variety of physiological derangement seen in critical care patients.
Inhaled nitric oxide (NO) is used for its unique selective pulmonary vasodilator effect. Recent studies showed that NO plays a pivotal role in regulating ischemia-reperfusion injury and it has antibacterial and antiviral activity.
Helium, due to its low density, is used in patients with upper airway obstruction and lower airway obstruction to facilitate gas flow and to reduce work of breathing.
Carbon monoxide (CO) is a poisonous gas that acts as a signaling molecule involved in many biologic pathways. CO's anti-inflammatory and antiproliferative effects are under investigation in the setting of acute respiratory distress and idiopathic pulmonary fibrosis.
Inhaled anesthetics are widely used in the operative room setting and, with the development of anesthetic reflectors, are now a valid option for sedation management in the intensive care unit.
Many other gases such as xenon, argon, and hydrogen sulfide are under investigation for their neuroprotective and cardioprotective effects in post-cardiac arrest syndrome.
With all these therapeutic options available, the clinician must have a clear understanding of the physiologic basis, therapeutic potential, and possible adverse events of these therapeutic gases. In this review, we will present the therapeutic gases other than oxygen used in clinical practice and we will describe other promising therapeutic gases that are in the early phases of investigation.
Publication History
Article published online:
09 May 2022
© 2022. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
Reference
- 1 Frostell CG, Blomqvist H, Hedenstierna G, Lundberg J, Zapol WM. Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 1993; 78 (03) 427-435
- 2 Fratacci MD, Frostell CG, Chen TY, Wain Jr JC, Robinson DR, Zapol WM. Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology 1991; 75 (06) 990-999
- 3 Kinsella JP, Neish SR, Shaffer E, Abman SH. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 1992; 340 (8823): 819-820
- 4 Roberts JD, Polaner DM, Lang P, Zapol WM. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 1992; 340 (8823): 818-819
- 5 The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics 1997; 99 (06) 838-845
- 6 Kinsella JP, Parker TA, Galan H, Sheridan BC, Halbower AC, Abman SH. Effects of inhaled nitric oxide on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr Res 1997; 41 (4, Pt 1): 457-463
- 7 Yu B, Ichinose F, Bloch DB, Zapol WM. Inhaled nitric oxide. Br J Pharmacol 2019; 176 (02) 246-255
- 8 Mourgeon E, Levesque E, Duveau C. et al. Factors influencing indoor concentrations of nitric oxide in a Parisian intensive care unit. Am J Respir Crit Care Med 1997; 156 (05) 1692-1695
- 9 Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 2003; 93 (04) 280-291
- 10 Dupuy PM, Shore SA, Drazen JM, Frostell C, Hill WA, Zapol WM. Bronchodilator action of inhaled nitric oxide in guinea pigs. J Clin Invest 1992; 90 (02) 421-428
- 11 Kacmarek RM, Ripple R, Cockrill BA, Bloch KJ, Zapol WM, Johnson DC. Inhaled nitric oxide. A bronchodilator in mild asthmatics with methacholine-induced bronchospasm. Am J Respir Crit Care Med 1996; 153 (01) 128-135
- 12 Roberts Jr JD, Chiche JD, Weimann J, Steudel W, Zapol WM, Bloch KD. Nitric oxide inhalation decreases pulmonary artery remodeling in the injured lungs of rat pups. Circ Res 2000; 87 (02) 140-145
- 13 Yerebakan C, Ugurlucan M, Bayraktar S, Bethea BT, Conte JV. Effects of inhaled nitric oxide following lung transplantation. J Card Surg 2009; 24 (03) 269-274
- 14 Hare JM, Stamler JS. NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 2005; 115 (03) 509-517
- 15 Roberts Jr JD, Fineman JR, Morin III FC. et al. The Inhaled Nitric Oxide Study Group. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. N Engl J Med 1997; 336 (09) 605-610
- 16 Clark RH, Kueser TJ, Walker MW. et al. Clinical Inhaled Nitric Oxide Research Group. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. N Engl J Med 2000; 342 (07) 469-474
- 17 Clark RH, Ursprung RL, Walker MW, Ellsbury DL, Spitzer AR. The changing pattern of inhaled nitric oxide use in the neonatal intensive care unit. J Perinatol 2010; 30 (12) 800-804
- 18 Subhedar NV, Shaw NJ. Changes in oxygenation and pulmonary haemodynamics in preterm infants treated with inhaled nitric oxide. Arch Dis Child Fetal Neonatal Ed 1997; 77 (03) F191-F197
- 19 Kinsella JP, Walsh WF, Bose CL. et al. Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial. Lancet 1999; 354 (9184): 1061-1065
- 20 Srisuparp P, Heitschmidt M, Schreiber MD. Inhaled nitric oxide therapy in premature infants with mild to moderate respiratory distress syndrome. J Med Assoc Thai 2002; 85 (Suppl. 02) S469-S478
- 21 Field D, Elbourne D, Truesdale A. et al. INNOVO Trial Collaborating Group. Neonatal ventilation with inhaled nitric oxide versus ventilatory support without inhaled nitric oxide for preterm infants with severe respiratory failure: the INNOVO multicentre randomised controlled trial (ISRCTN 17821339). Pediatrics 2005; 115 (04) 926-936
- 22 Van Meurs KP, Wright LL, Ehrenkranz RA. et al. Preemie Inhaled Nitric Oxide Study. Inhaled nitric oxide for premature infants with severe respiratory failure. N Engl J Med 2005; 353 (01) 13-22
- 23 Kinsella JP, Cutter GR, Walsh WF. et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med 2006; 355 (04) 354-364
- 24 Ballard RA, Truog WE, Cnaan A. et al. NO CLD Study Group. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 2006; 355 (04) 343-353
- 25 Mercier J-C, Hummler H, Durrmeyer X. et al. EUNO Study Group. Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomised controlled trial. Lancet 2010; 376 (9738): 346-354
- 26 Hascoet JM, Fresson J, Claris O. et al. The safety and efficacy of nitric oxide therapy in premature infants. J Pediatr 2005; 146 (03) 318-323
- 27 Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328 (06) 399-405
- 28 Benzing A, Geiger K. Inhaled nitric oxide lowers pulmonary capillary pressure and changes longitudinal distribution of pulmonary vascular resistance in patients with acute lung injury. Acta Anaesthesiol Scand 1994; 38 (07) 640-645
- 29 Troncy E, Collet JP, Shapiro S. et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med 1998; 157 (5, Pt 1): 1483-1488
- 30 Taylor RW, Zimmerman JL, Dellinger RP. et al. Inhaled Nitric Oxide in ARDS Study Group. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 2004; 291 (13) 1603-1609
- 31 Gerlach H, Keh D, Semmerow A. et al. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med 2003; 167 (07) 1008-1015
- 32 Dowell JC, Thomas NJ, Yehya N. Association of response to inhaled nitric oxide and duration of mechanical ventilation in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med 2017; 18 (11) 1019-1026
- 33 Bronicki RA, Fortenberry J, Schreiber M, Checchia PA, Anas NG. Multicenter randomized controlled trial of inhaled nitric oxide for pediatric acute respiratory distress syndrome. J Pediatr 2015; 166 (02) 365.e1-369.e1
- 34 Berger JT, Maddux AB, Reeder RW. et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Inhaled nitric oxide use in pediatric hypoxemic respiratory failure. Pediatr Crit Care Med 2020; 21 (08) 708-719
- 35 Journois D, Baufreton C, Mauriat P, Pouard P, Vouhé P, Safran D. Effects of inhaled nitric oxide administration on early postoperative mortality in patients operated for correction of atrioventricular canal defects. Chest 2005; 128 (05) 3537-3544
- 36 Miller OI, Celermajer DS, Deanfield JE, Macrae DJ. Very-low-dose inhaled nitric oxide: a selective pulmonary vasodilator after operations for congenital heart disease. J Thorac Cardiovasc Surg 1994; 108 (03) 487-494
- 37 Journois D, Pouard P, Mauriat P, Malhère T, Vouhé P, Safran D. Inhaled nitric oxide as a therapy for pulmonary hypertension after operations for congenital heart defects. J Thorac Cardiovasc Surg 1994; 107 (04) 1129-1135
- 38 Miller OI, Tang SF, Keech A, Pigott NB, Beller E, Celermajer DS. Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomised double-blind study. Lancet 2000; 356 (9240): 1464-1469
- 39 Morris K, Beghetti M, Petros A, Adatia I, Bohn D. Comparison of hyperventilation and inhaled nitric oxide for pulmonary hypertension after repair of congenital heart disease. Crit Care Med 2000; 28 (08) 2974-2978
- 40 Russell IA, Zwass MS, Fineman JR. et al. The effects of inhaled nitric oxide on postoperative pulmonary hypertension in infants and children undergoing surgical repair of congenital heart disease. Anesth Analg 1998; 87 (01) 46-51
- 41 Day RW, Hawkins JA, McGough EC, Crezeé KL, Orsmond GS. Randomized controlled study of inhaled nitric oxide after operation for congenital heart disease. Ann Thorac Surg 2000; 69 (06) 1907-1912 , discussion 1913
- 42 Bizzarro M, Gross I, Barbosa FT. Inhaled nitric oxide for the postoperative management of pulmonary hypertension in infants and children with congenital heart disease. Cochrane Database Syst Rev 2014; (07) CD005055
- 43 Checchia PA, Bronicki RA, Goldstein B. Review of inhaled nitric oxide in the pediatric cardiac surgery setting. Pediatr Cardiol 2012; 33 (04) 493-505
- 44 James C, Millar J, Horton S, Brizard C, Molesworth C, Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med 2016; 42 (11) 1744-1752
- 45 Cantero-Pérez EM, Sayago I, Sobrino-Márquez JM. et al. Impact of preoperative pulmonary hypertension on survival in patients undergoing elective heart transplant. Transplant Proc 2020; 52 (02) 580-583
- 46 Ardehali A, Hughes K, Sadeghi A. et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation 2001; 72 (04) 638-641
- 47 Frazier OH, Rose EA, Macmanus Q. et al. Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann Thorac Surg 1992; 53 (06) 1080-1090
- 48 Macdonald PS, Keogh A, Mundy J. et al. Adjunctive use of inhaled nitric oxide during implantation of a left ventricular assist device. J Heart Lung Transplant 1998; 17 (03) 312-316
- 49 Argenziano M, Choudhri AF, Moazami N. et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg 1998; 65 (02) 340-345
- 50 Potapov E, Meyer D, Swaminathan M. et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant 2011; 30 (08) 870-878
- 51 Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190 (03) 255-266
- 52 Fox-Robichaud A, Payne D, Hasan SU. et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J Clin Invest 1998; 101 (11) 2497-2505
- 53 Derwall M, Ebeling A, Nolte KW. et al. Inhaled nitric oxide improves transpulmonary blood flow and clinical outcomes after prolonged cardiac arrest: a large animal study. Crit Care 2015; 19: 328
- 54 Liu X, Huang Y, Pokreisz P. et al. Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 2007; 50 (08) 808-817
- 55 Minamishima S, Kida K, Tokuda K. et al. Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation 2011; 124 (15) 1645-1653
- 56 Hayashida K, Bagchi A, Miyazaki Y. et al. Improvement in outcomes after cardiac arrest and resuscitation by inhibition of S-nitrosoglutathione reductase. Circulation 2019; 139 (06) 815-827
- 57 Lang Jr JD, Smith AB, Brandon A. et al. A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS One 2014; 9 (02) e86053
- 58 Janssens SP, Bogaert J, Zalewski J. et al. NOMI investigators. Nitric oxide for inhalation in ST-elevation myocardial infarction (NOMI): a multicentre, double-blind, randomized controlled trial. Eur Heart J 2018; 39 (29) 2717-2725
- 59 Minneci PC, Deans KJ, Zhi H. et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest 2005; 115 (12) 3409-3417
- 60 Lei C, Berra L, Rezoagli E. et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am J Respir Crit Care Med 2018; 198 (10) 1279-1287
- 61 Miller C, McMullin B, Ghaffari A. et al. Gaseous nitric oxide bactericidal activity retained during intermittent high-dose short duration exposure. Nitric Oxide 2009; 20 (01) 16-23
- 62 Miller CC, Hergott CA, Rohan M, Arsenault-Mehta K, Döring G, Mehta S. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. J Cyst Fibros 2013; 12 (06) 817-820
- 63 Wiegand SB, Traeger L, Nguyen HK. et al. Antimicrobial effects of nitric oxide in murine models of Klebsiella pneumonia. Redox Biol 2021; 39: 101826
- 64 Bartley BL, Gardner KJ, Spina S. et al. High-dose inhaled nitric oxide as adjunct therapy in cystic fibrosis targeting Burkholderia multivorans . Case Rep Pediatr 2020; 2020: 1536714
- 65 Barraud N, Schleheck D, Klebensberger J. et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 2009; 191 (23) 7333-7342
- 66 Howlin RP, Cathie K, Hall-Stoodley L. et al. Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther 2017; 25 (09) 2104-2116
- 67 Ahonen MJR, Dorrier JM, Schoenfisch MH. Antibiofilm efficacy of nitric oxide-releasing alginates against cystic fibrosis bacterial pathogens. ACS Infect Dis 2019; 5 (08) 1327-1335
- 68 Tal A, Greenberg D, Av-Gay Y. et al. Nitric oxide inhalations in bronchiolitis: a pilot, randomized, double-blinded, controlled trial. Pediatr Pulmonol 2018; 53 (01) 95-102
- 69 Chen L, Liu P, Gao H. et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. Clin Infect Dis 2004; 39 (10) 1531-1535
- 70 Akerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist A, Mirazimi A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 2005; 79 (03) 1966-1969
- 71 Akaberi D, Krambrich J, Ling J. et al. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol 2020; 37: 101734
- 72 Wiegand SB, Safaee Fakhr B, Carroll RW, Zapol WM, Kacmarek RM, Berra L. Rescue treatment with high-dose gaseous nitric oxide in spontaneously breathing patients with severe coronavirus disease 2019. Crit Care Explor 2020; 2 (11) e0277
- 73 Safaee Fakhr B, Di Fenza R, Gianni S. et al. Nitric Oxide Study Investigators. Inhaled high dose nitric oxide is a safe and effective respiratory treatment in spontaneous breathing hospitalized patients with COVID-19 pneumonia. Nitric Oxide 2021; 116: 7-13
- 74 Safaee Fakhr B, Wiegand SB, Pinciroli R. et al. High concentrations of nitric oxide inhalation therapy in pregnant patients with severe coronavirus disease 2019 (COVID-19). Obstet Gynecol 2020; 136 (06) 1109-1113
- 75 Reuben AD, Harris AR. Heliox for asthma in the emergency department: a review of the literature. Emerg Med J 2004; 21 (02) 131-135
- 76 Ulhôa CA, Larner L. Helium-Oxigen (Heliox) mixture in airway obstruction [in Portuguese]. J Pediatr (Rio J) 2000; 76 (01) 73-78
- 77 Enneper S, Prüter E, Jenke A. et al. Cardiorespiratory effects of heliox using a model of upper airway obstruction [in German]. Biomed Tech (Berl) 2005; 50 (05) 126-131
- 78 Grosz AH, Jacobs IN, Cho C, Schears GJ. Use of helium-oxygen mixtures to relieve upper airway obstruction in a pediatric population. Laryngoscope 2001; 111 (09) 1512-1514
- 79 Tan TQ, Thiele JS, Cook Jr EW. Use of helium in the management of upper airway obstruction. J La State Med Soc 1990; 142 (06) 49-51
- 80 Fu A, Kopec A, Markham M. Heliox in upper airway obstruction. Off J Can Assoc Crit Care Nurs 1999; 10 (04) 12-13 , quiz 14–15
- 81 Anderson M, Svartengren M, Bylin G, Philipson K, Camner P. Deposition in asthmatics of particles inhaled in air or in helium-oxygen. Am Rev Respir Dis 1993; 147 (03) 524-528
- 82 Goode ML, Fink JB, Dhand R, Tobin MJ. Improvement in aerosol delivery with helium-oxygen mixtures during mechanical ventilation. Am J Respir Crit Care Med 2001; 163 (01) 109-114
- 83 Shiue ST, Gluck EH. The use of helium-oxygen mixtures in the support of patients with status asthmaticus and respiratory acidosis. J Asthma 1989; 26 (03) 177-180
- 84 Kass JE, Castriotta RJ. Heliox therapy in acute severe asthma. Chest 1995; 107 (03) 757-760
- 85 Manthous CA, Hall JB, Caputo MA. et al. Heliox improves pulsus paradoxus and peak expiratory flow in nonintubated patients with severe asthma. Am J Respir Crit Care Med 1995; 151 (2, Pt 1): 310-314
- 86 Rodrigo G, Pollack C, Rodrigo C, Rowe BH. Heliox for nonintubated acute asthma patients. Cochrane Database Syst Rev 2006; 2006 (04) CD002884
- 87 Swidwa DM, Montenegro HD, Goldman MD, Lutchen KR, Saidel GM. Helium-oxygen breathing in severe chronic obstructive pulmonary disease. Chest 1985; 87 (06) 790-795
- 88 Pecchiari M, Pelucchi A, D'Angelo E, Foresi A, Milic-Emili J, D'Angelo E. Effect of heliox breathing on dynamic hyperinflation in COPD patients. Chest 2004; 125 (06) 2075-2082
- 89 Jolliet P, Tassaux D, Roeseler J. et al. Helium-oxygen versus air-oxygen noninvasive pressure support in decompensated chronic obstructive disease: A prospective, multicenter study. Crit Care Med 2003; 31 (03) 878-884
- 90 Tassaux D, Jolliet P, Roeseler J, Chevrolet JC. Effects of helium-oxygen on intrinsic positive end-expiratory pressure in intubated and mechanically ventilated patients with severe chronic obstructive pulmonary disease. Crit Care Med 2000; 28 (08) 2721-2728
- 91 Rodrigo G, Pollack C, Rodrigo C, Rowe B. Heliox for treatment of exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2002; (02) CD003571
- 92 deBoisblanc BP, DeBleiux P, Resweber S, Fusco EE, Summer WR. Randomized trial of the use of heliox as a driving gas for updraft nebulization of bronchodilators in the emergent treatment of acute exacerbations of chronic obstructive pulmonary disease. Crit Care Med 2000; 28 (09) 3177-3180
- 93 CDC - NIOSH Pocket Guide to Chemical Hazards - Carbon monoxide [Internet]. Accessed September 24, 2021 at: https://www.cdc.gov/niosh/npg/npgd0105.html
- 94 Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005; 57 (04) 585-630
- 95 Gullotta F, di Masi A, Coletta M, Ascenzi P. CO metabolism, sensing, and signaling. Biofactors 2012; 38 (01) 1-13
- 96 Kim HP, Ryter SW, Choi AMK. CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 2006; 46: 411-449
- 97 Von Burg R. Carbon monoxide. J Appl Toxicol 1999; 19 (05) 379-386
- 98 Lancaster Jr JR. Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications. Future Sci OA 2015; 1 (01) FSO59
- 99 Volpe JA, O'Toole MC, Caughey WS. Quantitative infrared spectroscopy of CO complexes of cytochrome c oxidase, hemoglobin and myoglobin: evidence for one CO per heme. Biochem Biophys Res Commun 1975; 62 (01) 48-53
- 100 Brown SD, Piantadosi CA. Reversal of carbon monoxide-cytochrome c oxidase binding by hyperbaric oxygen in vivo. Adv Exp Med Biol 1989; 248: 747-754
- 101 Estabrook RW, Franklin MR, Hildebrandt AG. Factors influencing the inhibitory effect of carbon monoxide on cytochrome P-450-catalyzed mixed function oxidation reactions. Ann N Y Acad Sci 1970; 174 (01) 218-232
- 102 Stone JR, Marletta MA. Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem Biol 1998; 5 (05) 255-261
- 103 Furchgott RF, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991; 28 (1–3): 52-61
- 104 Stevenson TH, Gutierrez AF, Alderton WK, Lian L, Scrutton NS. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands. Biochem J 2001; 358 (Pt 1): 201-208
- 105 Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994; 33 (18) 5636-5640
- 106 Suematsu M, Kashiwagi S, Sano T, Goda N, Shinoda Y, Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Commun 1994; 205 (02) 1333-1337
- 107 Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science 1993; 259 (5093): 381-384
- 108 Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997; 272 (52) 32804-32809
- 109 Brüne B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 1987; 32 (04) 497-504
- 110 Chance B, Erecinska M, Wagner M. Mitochondrial responses to carbon monoxide toxicity. Ann N Y Acad Sci 1970; 174 (01) 193-204
- 111 Lee S-J, Ryter SW, Xu J-F. et al. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. Am J Respir Cell Mol Biol 2011; 45 (04) 867-873
- 112 Chin BY, Jiang G, Wegiel B. et al. Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci U S A 2007; 104 (12) 5109-5114
- 113 Zuckerbraun BS, Chin BY, Bilban M. et al. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 2007; 21 (04) 1099-1106
- 114 Bilban M, Bach FH, Otterbein SL. et al. Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 2006; 24 (05) 601-610
- 115 Suliman HB, Carraway MS, Ali AS, Reynolds CM, Welty-Wolf KE, Piantadosi CA. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest 2007; 117 (12) 3730-3741
- 116 Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 2007; 120 (Pt 2): 299-308
- 117 Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 2009; 329 (02) 641-648
- 118 Heinemann SH, Hoshi T, Westerhausen M, Schiller A. Carbon monoxide–physiology, detection and controlled release. Chem Commun (Camb) 2014; 50 (28) 3644-3660
- 119 Leffler CW, Parfenova H, Jaggar JH. Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol 2011; 301 (01) H1-H11
- 120 Hampson NBUS. U.S. mortality due to carbon monoxide poisoning, 1999-2014. accidental and intentional deaths. Ann Am Thorac Soc 2016; 13 (10) 1768-1774
- 121 Hampson NB, Piantadosi CA, Thom SR, Weaver LK. Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning. Am J Respir Crit Care Med 2012; 186 (11) 1095-1101
- 122 Weaver LK, Valentine KJ, Hopkins RO. Carbon monoxide poisoning: risk factors for cognitive sequelae and the role of hyperbaric oxygen. Am J Respir Crit Care Med 2007; 176 (05) 491-497
- 123 Hampson NB, Hauff NM. Carboxyhemoglobin levels in carbon monoxide poisoning: do they correlate with the clinical picture?. Am J Emerg Med 2008; 26 (06) 665-669
- 124 Guzman JA. Carbon monoxide poisoning. Crit Care Clin 2012; 28 (04) 537-548
- 125 Ryter SW, Ma KC, Choi AMK. Carbon monoxide in lung cell physiology and disease. Am J Physiol Cell Physiol 2018; 314 (02) C211-C227
- 126 Fredenburgh LE, Kraft BD, Hess DR. et al. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia. Am J Physiol Lung Cell Mol Physiol 2015; 309 (08) L834-L846
- 127 Nakahira K, Choi AMK. Carbon monoxide in the treatment of sepsis. Am J Physiol Lung Cell Mol Physiol 2015; 309 (12) L1387-L1393
- 128 Hoetzel A, Schmidt R, Vallbracht S. et al. Carbon monoxide prevents ventilator-induced lung injury via caveolin-1. Crit Care Med 2009; 37 (05) 1708-1715
- 129 Chiang N, Shinohara M, Dalli J. et al. Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. J Immunol 2013; 190 (12) 6378-6388
- 130 Jung S-S, Moon J-S, Xu J-F. et al. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol 2015; 308 (10) L1058-L1067
- 131 Fredenburgh LE, Perrella MA, Barragan-Bradford D. et al. A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS. JCI Insight 2018; 3 (23) 124039
- 132 Zhou Z, Song R, Fattman CL. et al. Carbon monoxide suppresses bleomycin-induced lung fibrosis. Am J Pathol 2005; 166 (01) 27-37
- 133 Rosas IO, Goldberg HJ, Collard HR. et al. A phase II clinical trial of low-dose inhaled carbon monoxide in idiopathic pulmonary fibrosis. Chest 2018; 153 (01) 94-104
- 134 Devlin JW, Skrobik Y, Gélinas C. et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 2018; 46 (09) e825-e873
- 135 Page VJ, McAuley DF. Sedation/drugs used in intensive care sedation. Curr Opin Anaesthesiol 2015; 28 (02) 139-144
- 136 Preckel B, Bolten J. Pharmacology of modern volatile anaesthetics. Best Pract Res Clin Anaesthesiol 2005; 19 (03) 331-348
- 137 Meiser A, Laubenthal H. Inhalational anaesthetics in the ICU: theory and practice of inhalational sedation in the ICU, economics, risk-benefit. Best Pract Res Clin Anaesthesiol 2005; 19 (03) 523-538
- 138 Enlund M, Wiklund L, Lambert H. A new device to reduce the consumption of a halogenated anaesthetic agent. Anaesthesia 2001; 56 (05) 429-432
- 139 Eger II EI, Koblin DD, Harris RA. et al. Hypothesis: inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites. Anesth Analg 1997; 84 (04) 915-918
- 140 Carpenter RL, Eger II EI, Johnson BH, Unadkat JD, Sheiner LB. The extent of metabolism of inhaled anesthetics in humans. Anesthesiology 1986; 65 (02) 201-205
- 141 Kim HY, Lee JE, Kim HY, Kim J. Volatile sedation in the intensive care unit: a systematic review and meta-analysis. Medicine (Baltimore) 2017; 96 (49) e8976
- 142 Heneghan CPH, Branthwaite MA. Non-invasive measurement of cardiac output during anaesthesia. An evaluation of the soluble gas uptake method. Br J Anaesth 1981; 53 (04) 351-355
- 143 Kotzerke J, Glatting G, van den Hoff J. et al. Validation of myocardial blood flow estimation with nitrogen-13 ammonia PET by the argon inert gas technique in humans. Eur J Nucl Med 2001; 28 (03) 340-345
- 144 Ristagno G, Fumagalli F, Russo I. et al. Postresuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock 2014; 41 (01) 72-78
- 145 Ulbrich F, Goebel U. The molecular pathway of argon-mediated neuroprotection. Int J Mol Sci 2016; 17 (11) E1816
- 146 Aziz TS. Xenon in anesthesia. Int Anesthesiol Clin 2001; 39 (02) 1-14
- 147 Chakkarapani E, Thoresen M, Hobbs CE, Aquilina K, Liu X, Dingley J. A closed-circuit neonatal xenon delivery system: a technical and practical neuroprotection feasibility study in newborn pigs. Anesth Analg 2009; 109 (02) 451-460
- 148 Derwall M, Coburn M, Rex S, Hein M, Rossaint R, Fries M. Xenon: recent developments and future perspectives. Minerva Anestesiol 2009; 75 (1–2): 37-45
- 149 Dickinson R, Peterson BK, Banks P. et al. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology 2007; 107 (05) 756-767
- 150 Bantel C, Maze M, Trapp S. Noble gas xenon is a novel adenosine triphosphate-sensitive potassium channel opener. Anesthesiology 2010; 112 (03) 623-630
- 151 Derwall M, Timper A, Kottmann K, Rossaint R, Fries M. Neuroprotective effects of the inhalational anesthetics isoflurane and xenon after cardiac arrest in pigs. Crit Care Med 2008; 36 (11, Suppl): S492-S495
- 152 Fries M, Brücken A, Çizen A. et al. Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med 2012; 40 (04) 1297-1303
- 153 Arola OJ, Laitio RM, Roine RO. et al. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med 2013; 41 (09) 2116-2124
- 154 Ohsawa I, Ishikawa M, Takahashi K. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13 (06) 688-694
- 155 Xie K, Yu Y, Zhang Z. et al. Hydrogen gas improves survival rate and organ damage in zymosan-induced generalized inflammation model. Shock 2010; 34 (05) 495-501
- 156 Meng C, Ma L, Niu L. et al. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats. Life Sci 2016; 151: 199-206
- 157 Li Y, Xie K, Chen H, Wang G, Yu Y. Hydrogen gas inhibits high-mobility group box 1 release in septic mice by upregulation of heme oxygenase 1. J Surg Res 2015; 196 (01) 136-148
- 158 Tao B, Liu L, Wang N, Wang W, Jiang J, Zhang J. Effects of hydrogen-rich saline on aquaporin 1, 5 in septic rat lungs. J Surg Res 2016; 202 (02) 291-298
- 159 Cui J, Chen X, Zhai X. et al. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - a possible new hydrogen resource for clinical use. Neuroscience 2016; 335: 232-241
- 160 Xin Y, Liu H, Zhang P, Chang L, Xie K. Molecular hydrogen inhalation attenuates postoperative cognitive impairment in rats. Neuroreport 2017; 28 (11) 694-700
- 161 Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J Neurochem 2010; 113 (01) 14-26
- 162 Geng Y, Li E, Mu Q. et al. Hydrogen sulfide inhalation decreases early blood-brain barrier permeability and brain edema induced by cardiac arrest and resuscitation. J Cereb Blood Flow Metab 2015; 35 (03) 494-500
- 163 Wei X, Zhang B, Zhang Y. et al. Hydrogen sulfide inhalation improves neurological outcome via NF-κB-mediated inflammatory pathway in a rat model of cardiac arrest and resuscitation. Cell Physiol Biochem 2015; 36 (04) 1527-1538
- 164 Marutani E, Morita M, Hirai S. et al. Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun 2021; 12 (01) 3108