J Am Acad Audiol 2000; 11(05): 239-272
DOI: 10.1055/s-0042-1748052
SPECIAL TUTORIAL

Principles of Functional Magnetic Resonance Imaging: Application to Auditory Neuroscience

Anthony T. Cacace
Department of Surgery, Albany Medical College, Albany, New York
Department of Neurology, Albany Medical College, Albany, New York
,
Talin Tasciyan
Sensor Systems, Inc., Sterling, Virginia
,
Joseph P. Cousins
Department of Radiology, Albany Medical College, Albany, New York
› Author Affiliations

Abstract

Functional imaging based on magnetic resonance methods is a new research frontier for exploring a wide range of central nervous system (CNS) functions, including information processing in sensory, motor, cognitive, and linguistic systems. Being able to localize and study human brain function in vivo, in relatively high resolution and in a noninvasive manner, makes this a technique of unparalleled importance. In order to appreciate and fully understand this area of investigation, a tutorial covering basic aspects of this methodology is presented. We introduce functional magnetic resonance imaging (fMRI) by providing an overview of the studies of different sensory systems in response to modality-specific stimuli, followed by an outline of other areas that have potential clinical relevance to the medical, cognitive, and communicative sciences. The discussion then focuses on the basic principles of magnetic resonance methods including magnetic resonance imaging, MR spectroscopy, fMRI, and the potential role that MR technology may play in understanding a wide range of auditory functions within the CNS, including tinnitus-related activity. Because the content of the material found herein might be unfamiliar to some, we provide a broad range of background and review articles to serve as a technical resource.

Abbreviations: AL = anterior lateral, BOLD = blood oxygen level dependent, Cho = choline, CL = caudal lateral, CNS = central nervous system, CR = creatine, EEG = electroencephalography, EPI = echo planar imaging, ER = event related, ETS = echo-time shifting, fMRI = functional magnetic resonance imaging, FOV = field of view, G = Gauss, GET = gaze-evoked tinnitus, GRE = gradient-recalled echo, MEG = magnetoencephalography, ml = myo-inositol, ML = medial lateral, MRI = magnetic resonance imaging, MRS = magnetic resonance spectroscopy, NAA = N-acetylaspartate, NMR = nuclear magnetic resonance, PET = positron emission tomography, PRESTO = principles of echo shifting with a train of observations, RF = radio frequency, ROI = regions of interest, SE = spin echo, STEAM = short-TE stimulated echo acquisition mode, Τ = Tesla, TE = echo time, TR = repetition time



Publication History

Article published online:
07 April 2022

© 2000. American Academy of Audiology. This article is published by Thieme.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • REFERENCES

  • Achten E, Jackson GD, Cameron JA, Abbott DF, Stella DL, Fabini GC. (1999). Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 210: 529–538.
  • Aguirre GK, D'Esposito M. (1999). Experimental design for brain/MRI. In: Moonen CTW, Bandettini P, eds. Functional MRI. Berlin: Springer-Verlag, 369–380.
  • Arnold W, Bartenstein Ρ, Oestreicher E, Romer W, Schwaiger M. (1996). Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F] deoxyglucose. ORL J Oto rhinolaryngol Relat Spec 58:195–199.
  • las SW, Howard RS, Maldjian J, Alsop D, Detre JA, Listerud J, D'Esposito M, Judy KD, Zager E, Stecker M. (1996). Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38:329–338.
  • ciu MV, Rubin C, Decorps MA, Segbarth CM. (1999). FMR1 assessment of hemispheric language dominance using a simple inner speech paradigm. NMR Biomed 12:293–298.
  • ndettini PA, Wong EC. (1997). Magnetic resonance imaging of human brain function. Principles, practicalities, and possibilities. Neurosurg Clin North Am 8:345–371.
  • ndettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. (1992). Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397.
  • ndettini PA, Jesmanowicz A, Wong EC, Hyde JS. (1993). Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173.
  • tes EA, Thai D, Janowsky J. (1992). Early language development and its neural correlates. In: Segalowitz SJ, Rapin I, eds. Handbook of Neuropsychology. Vol 7: Child Neuropsychology. Amsterdam: Elsevier Science, 69–110.
  • auer CA, Brozoski TJ, Rojas R, Boley J, Wyder M. (1999). Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg 121:457–462.
  • aumgart F, Gaschler-Markefski Β, Woldorff MG, Heinze HJ, Scheich H. (1999). Α movement sensitive area in auditory cortex. Nature 400:724–726.
  • aumgartner R, Scarth G, Terchtmeister C, Somorjai R, Moser E. (1997). Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: Reproducibility. J Magn Reson Imaging 7:1094–1101.
  • eaton AA. (1997). The relation of planum temporale asymmetry and morphology of the corpus callosum to handedness, gender and dyslexia: a review of the evidence. Brain Lang 60:255–322.
  • elin P, Zattore RJ, Hoge R, Evans AC, Pike B. (1999). Event-related fMRI of the auditory cortex. Neuroimage 10:417–429.
  • elin P, Zattore RJ, LaFaille P, Ahad P, Pike B. (2000). Voice-selective areas in human auditory cortex. Nature 403:309–312.
  • elliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719.
  • enson RR, Logan WJ, Cosgrove GR, Cole AJ, Jing H, LeSueur LL, Buchbinder BR, Rosen BR, Caviness VS Jr. (1996). Functional MRI localization of language in a 9–year-old child. Can J Neurosci 23:213–219.
  • enson RR, Fitzgerald DB, LeSueur LL, Kennedy DN, Kwong KK, Buchbinder BR, Davis TL, Weisskoff RM, Talavage TM, Logan WJ, Cosgrove GR, Belliveau JW, Rosen BR. (1999). Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52:798–809.
  • erman J. (1995). Imaging pain in humans. Br J Anaesth 75:209–216.
  • ilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J. (1998). Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear Res 126:19–27.
  • inder J. (1997). Functional magnetic resonance imaging. Language mapping. Neurosurg Clin North Am 8:383–392.
  • inder J. (1999). Functional MRI of the language system. In: Moonen CTW, Bandettini PA, eds. Functional MRI. New York: Springer-Verlag, 407–19.
  • inder J, Rao SM, Hammcke TA, Frost JA, Bandettini PA, Jesmanowicz A, Hyde JS. (1995a). Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 52:593–601.
  • inder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, Benbadis S, Frost JA, Rao SM, Haughton VM. (1995b). Determination of language dominance using functional MRI: comparison with the Wada test. Neurology 46:978–984.
  • lamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellermann JM, Hyder F, Rattner Z, Shul-man RG. (1992). Dynamic mapping of the visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci U S A 89:11069–11073.
  • loch F, Hansen WW, Packard M. (1946). Nuclear induction. Phys Rev 69:127.
  • ookheimer SY. (1996). Functional MRI applications in clinical epilepsy. Neuroimage 4:S139–S141.
  • ookheimer SY, Dapretto M, Karmarker U. (1999). Functional MRI in children with epilepsy. Dev Neurosci 21:191–199.
  • ooth JR, Macwhinney B, Thulborn KR, Sacco K, Voyvodic J, Feldman HM. (1999). Functional organization of activation patterns in children: whole brain fMRI imaging during three different cognitive tasks. Prog Neuropsycho-pharmacol Biol Psychiatry 23:669–682.
  • racewell RN. (1986). The Fourier Transform and Its Applications. San Francisco: McGraw-Hill.
  • radley WG, Chen D-Y, Atkinson DJ, Edelman RE. (1999). Fast spin-echo and echo planar imaging In: Stark DD, Bradley WG, eds. Magnetic Resonance Imaging. Volume 3, 3rd Ed. St. Louis: Mosby, 125–157.
  • rooks WM, Friedman SD, Stidley CA. (1999). Reproducibility of 1H-MRS in vivo. Magn Reson Med 41:193–197.
  • ucher SF, Diederich Μ, Wiesmann Μ, Weiss Α, Zink R, Yousry TA, Brandt T. (1998). Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 44:120–125.
  • uckner RL. (1998). Event-related/MRI and the hemodynamic response. Hum Brain Map 6:373–377.
  • uckner RL, Bandettini PA, O'Craven KM, Savoy RL, Petersen SE, Raichle ME, Rosen BR (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci USA 93:14878–14883.
  • uckner RL, Braver TS. (1999). Event related functional MRI. In: Moonen CTW, Bandettini PA, eds. Functional MRI. New York: Springer-Verlag, 441–452.
  • uckner RL, Kelley WM, Petersen SE. (1999). Frontal cortex contributes to human memory formation. Nat Neurosci 2:311–314.
  • ullmore ET, Rabe-Hesketh S, Morris RG, Williams SCR, Gregory WL, Gray JA, Brammer MI. (1996). Functional magnetic resonance image analysis of a large-scale neu-rocognitive network. Neuroimage 4:16–33.
  • acace AT. (1997). Imaging tinnitus with fMRI, Presidential Symposium. Assoc Res Otolaryngol 20:7.
  • acace AT. (1999). Delineating tinnitus-related activity in the nervous system: application of functional imaging at the fin de siécle. In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: The Tinnitus and Hyperacusis Centre, 39–44.
  • acace AT, Lovely TJ, McFarland DJ, Parnes SM, Winter DF. (1994a). Anomalous cross-modal plasticity following posterior fossa surgery: some speculations on gaze-evoked tinnitus. Hear Res 81:22–32.
  • acace AT, Lovely TJ, Winter DF, Parnes SM, McFarland DJ. (1994b). Auditory perceptual and visual spatial characteristics of gaze-evoked tinnitus. Audiology 33:291–303.
  • acace AT, McFarland DJ. (1998). Central auditory processing disorders in school-age children: a critical review. J Speech Lang Hear Res 41:355–373.
  • acace AT, Cousins J, Moonen CWT, Van Gelderen P, Parnes Lovely TJ. (1996a). In-vivo localization of phantom auditory perceptions during functional magnetic resonance imaging of the human brain. In: Reich G, Vernon J, eds. Proceedings of the Fifth International Tinnitus Seminar. Portland: American Tinnitus Association, 397–401.
  • acace AT, Parnes SM, Lovely TJ, Winter DF, McFarland DJ. (1996b). Gaze-evoked tinnitus following unilateral peripheral auditory deafferentation: a case for anomalous cross-modal plasticity. In: Salvi R, Henderson D, Fiorino F, Colletti V, eds: Auditory System Plasticity and Regeneration. New York: Thieme Medical, 354–358.
  • acace AT, Cousins JP, Parnes SM, Semenoff D, Holmes T, McFarland DJ, Davenport C, Stegbauer Κ, Lovely TJ. (1999a). Cutaneous-evoked tinnitus: I. Phenomenology, psychophysics and functional imaging. Audiol Neurootol 4:247–257.
  • acace AT, Cousins JP, Parnes SM, McFarland DJ, Semenoff D, Holmes T, Davenport C, Stegbauer K, Lovely TJ. (1999b). Cutaneous-evoked tinnitus. II. Review of neuroanatomical, physiological and functional imaging studies. Audiol Neurootol 4:258–268.
  • acace AT, McFarland DJ, Ouimet JR, Schrieber EJ, Marro P. (2000). Temporal processing deficits in remediation-resistant reading-impaired children. Audiol Neurootol 5:83–97.
  • alvert GA, Brammer MJ, Bullmore ET, Campbell R, Iversen SD, David AS. (1999). Response amplification in sensory-specific cortices during crossmodal binding. Neu-roreport 20:2619–2623.
  • ao Υ, Vikingstad EM, George KP, Johnson AF, Welch KM. (1999a). Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke 30:2331–2340.
  • ao Υ, Welch KMA, Aurora S, Vikingstad EM. (1999b). Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch Neurol 56:548–554.
  • hen G, Jastreboff PJ. (1995). Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res 82:158–178.
  • lare S, Humberstone M, Hykin J, Blumhardt L, Bowtell R, Morris P. (1999). Detecting activations in event-related fMRI using analysis of variance. Magn Reson Med 42:1117–1122.
  • oghill RC, Sang CN, Maisog JM, Iadarola MJ. (1999). Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943.
  • ohen MS. (1996). Rapid MRI and functional applications. In: AW Toga, Mazziotta JC, eds. Brain Mapping: The Methods. San Diego: Academic Press, 223–255.
  • ohen MS, Bookheimer SY (1994). Localization of brain function using magnetic resonance imaging. Trends Neu-rosci 17:268–277.
  • onstable RT, Kennan RP, Puce A, McCarthy G, Gore JC. (1994). Functional NMR imaging using fast spin echo at 1.5T. Magn Reson Med 31:686–690.
  • ousins JP. (1995) Clinical MR spectroscopy: fundamentals, current applications, and future potential. AJR Am J Roentgenol 164:1337–1347.
  • uenod CA, Bookheimer SY, Hertz-Pannier L, Zeffiro TA, Theodore WH, LeBihan D. (1995). Functional MRI during word generation using conventional equipment: a potential tool for language localization in clinical environment. Neurology 45:1821–1827.
  • ale AM, Buckner RL. (1997). Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Map 5:329–340.
  • anielsen ER, Ross BD. (1999). Neurospectroscopy. In: Stark DD, Bradley WG, eds. Magnetic Resonance Imaging. Vol. 3, 3rd Ed. St. Louis: Mosby, 1595–1635.
  • avid AS. (1999). Auditory hallucinations: phenomenology, neuropsychology and neuroimaging update. Acta Psychiatr Scand Suppl 395:95–104.
  • avidson RJ, Irwin W. (1999). Functional MRI in the study of emotion. In: Moonen CTW, Bandettini PA, eds. Functional MRI. New York: Springer-Verlag, 487–499.
  • avis KD, Kwan CL, Crawley AP, Mikulis DJ. (1998a). Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:1533–1546.
  • avis KD, Kwan CL, Crawley AP, Mikulis DJ. (1998b). Event-related fMRI of pain: entering a new era in imaging pain. Neuroreport 14:3019–3023.
  • erbyshire SW, Vogt BA, Jones AK. (1998). Pain and stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp Brain Res 118:52–60.
  • esmond JE, Sum JM, Wagner AD, Demp JB, Shear PK Glover GH, Gabrieli JD, Morrell MJ. (1995). Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118:1411–1419.
  • 'Esposito M, Zarahn E, Aguirre GK. (1999). Event-related functional MRI: implications for cognitive psychology. Psychol Bull 125:155–164.
  • etre JA, Leigh JS, Williams DS, Koretsky AP. (1992). Perfusion imaging. Magn Reson Med 23:37–45.
  • etre JA, Sirven JI, Alsop DC, O'Connor MJ, French JA. (1995). Localization of subcortical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring. Ann Neurol 38:618–624.
  • etre JA, Alsop DC, Aguirre GK, Sperling MR. (1996). Coupling of cortical and thalamic ictal activity in human partial epilepsy: demonstration by functional magnetic resonance imaging. Epilepsia 37:657–661.
  • isbrow E, Buonocore M, Antognini J, Carstens E, Rowley HA. (1998). Somatosensory cortex: a comparison of the response to noxious thermal, mechanical, and electrical stimuli using functional magnetic resonance imagine Hum Brain Map 6:150–159.
  • uchowny M, Jayakar P, Harvey AS, Resnick T, Alvarez L, Dean P, Levin B. (1996). Language cortex representation: effects of developmental versus acquired pathology. Ann Neurol 40:31–38.
  • uyn JH, Mattay VS, Sexton RH, Sobering GS, Barrios FA, Liu G, Frank JA, Weinberger DR, Moonen CTW. (1994a). 3–dimensional functional imaging of human brain using echo-shifted FLASH MRI. Magn Reson Med 32:150—155.
  • uyn JH, Moonen CWT, Yperen GH, Boer RW, Luyten PR. (1994b). Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1 5T NMR Biomed 7:83–88.
  • ddington DK, Melcher JR, Garcia N, Qin M, Sroka J Weisskoff RM. (1999). Electrically evoked cortical activity in cochlear implant subjects can be mapped using functional magnetic resonance imaging. Assoc Res Otolaryngol 22:41.
  • den GF, Zeffiro TA. (1998). Neural systems affected in developmental dyslexia revealed by functional neu-roimaging. Neuron 21:279–282.
  • den GG, Joseph JE, Brown HE, Brown CP, Zeffiro TA. (1999). Utilizing hemodynamic delay and dispersion to detect/MRI signal change without auditory interference. The behavior interleaved gradients technique. Magn Reson Med 41:13–20.
  • dmister WB, Talavage TM, Ledden PJ, Weisskoff RM. (1999). Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Map 7:89–97.
  • ggermont JJ, Kenmochi M. (1998). Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hear Res 117:149–160.
  • ggermont JJ, Komiya H. (1999). Auditory cortex reorganization after noise trauma: relation to tinnitus? In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: Tinnitus and Hyperacusis Centre 146–151.
  • llerman J, Garwood M, Henderich K, Hinke R, Hu X, Ugurbil K. (1994). Functional imaging of the brain by nuclear magnetic resonance. In: Gilles R, ed. NMR in Physiology and Biomedicine. San Diego: Academic 137–150.
  • lliot LL. (1994). Functional brain imaging and hearing J Acoust Soc Am 96:1397–1407.
  • rnst T, Hennig J. (1994). Observation of a first response in functional MR. Magn Reson Med 32:146–149.
  • arzaneh F, Riederer SJ, Pelc NJ. (1990). Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14:123–139.
  • aurion A, Cerf B, Le Bihan D, Pillas AM. (1998). fMRI study of taste cortical areas in humans. Ann Ν Υ Acad Sci 855:535–545.
  • orster BB, MacKay AL, Whittall KP, Kiehl KA, Smith AM, Hare RD, Liddle PF. (1998). Functional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imaging. Can Assoc Radiol 49:320–329.
  • ox PT, Raichle ME. (1986). Focal physiologic uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad SciUSA 83:1140–1146.
  • ox PT, Raichle ME, Mintun MA, Dence C. (1988). Nonox-idative glucose consumption during focal physiologic neural activity. Science 241:462–464.
  • rackowiak RSJ, Fristen KJ, Frith CD, Roland RJ, Mazziotta JC. (1997). Human Brain Function. San Diego: Academic.
  • rahm J, Hanefeld F. (1997). Localized proton magnetic resonance spectroscopy of brain disorders in childhood. In: Bachelard HS, ed. Magnetic Resonance Spectroscopy and Imaging in Neurochemistry. New York• Plenum 329–402.
  • rahm J, Haase A, Matthei D. (1986). Rapid NMR imaging of dynamic processes using the FLASH technique Magn Reson Med 3:321–327.
  • rahm J, Merboldt KD, Hanicke W, Kleinschmidt A, Boecker H. (1994). Brain or vein—oxygenation or flow?' On signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53.
  • ransson P, Kruger G, Merboldt KD, Frahm J. (1998). Temporal characteristics of oxygenation-sensitive MRI responses to visual activation in humans. Magn Reson Med 39:912–919.
  • ried I, Nenov VI, Ojeman SG, Woods RR (1995). Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg 83:854–861.
  • risten KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ. (1995a). Statistical parametric maps in functional imaging. A general linear approach. Hum Brain Map 2:189–210.
  • risten KJ, Frith CD, Frackowiak RSJ, Turner R. (1995b). Characterizing dynamic brain response with fMRI. A multivariate approach. Neuroimage 2:166–172.
  • riston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. (1996). Movement-related effects in fMRI time series. Magn Reson Med 35:346–355.
  • riston KJ, Zarahn E, Josephs O, Henson RN, Dale AM. (1999). Stochastic designs in event-related fMARI. Neuro-image 10:607–619.
  • Frost JA, Binder JR, Springer JA, Hammeke TA, Bel-lowan PSF, Rao SM, Cox RW. (1999). Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain 122:199–208.
  • Fulton JF. (1955). Textbook of Physiology. Philadelphia: WB Saunders.
  • Fytche DH, Howard RJ, Brammer MJ, David A, Woodruff P, Williams S. (1998). The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci 1:738–742.
  • Gaillard WD, Bookheimer SY, Hertz-Pannier L, Blaxton TA. (1997). The noninvasive identification of language function. Neuroimaging and rapid transcranial magnetic stimulation. Neurosurg Clin North Am 8: 321–335.
  • Gaschler-Markefski B, Baumgart F, Tempelman C, Schindler F, Stiller D, Heinze H-J, Scheich H. (1997). Statistical methods in functional magnetic resonance imaging with respect to nonstationary time-series: auditory cortex activity. Magn Reson Med 38:811–820.
  • Gati JS, Menon RS, Ugurbil K, Rutt BK. (1997). Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302.
  • Gevins A, Smith ME, McEvoy LK, Leong H, Le J. (1999). Electroencephalographic imaging of higher brain function. Philos Trans R Soc Lond Β Biol Sci 354:1125–1133.
  • Giraud AL, Chéry-Croze S, Fischer G, Fischer C, Vighetto A, Grégoire M-C, Lavenne F, Collet L. (1999). A selective imaging of tinnitus. Neuroreport 10:1–5.
  • Goldman AM, Gossman WE, Friedlander PC. (1989). Reduction of sound levels with anti-noise in MR imaging. Radiology 173:549–550.
  • Graveline CJ, Mikulis DJ, Crawley AP, Hwang PA. (1998). Regionalized sensorimotor plasticity after hemispherec-tomy fMRI evaluation. Pediatr Neurol 19:337–342.
  • Griffiths TD, Rees Α, Witten C, Shakir RA, Henning GB, Green GG. (1996). Evidence for a sound movement area in the human cerebral cortex. Nature 383:425–427.
  • Griffiths TD, Green GG, Rees A, Rees G. (2000). Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp 9:72–80.
  • Grimson WEL, Kikinis R, Jolesz FA, Black PM. (1999). Image-guided surgery. Sci Am 280:62–69.
  • Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden Ρ, Rosen BR, Kiang NYS, Fullerton BC, Weisskoff RM. (1998). Imaging subcortical auditory activity in humans. Hum Brain Map 6:33–41.
  • Hackett TA, Stepniewska I, Kass JH. (1999). Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817:45–58.
  • Hahn E. (1950). Spin echoes. Phys Rev 80:580–594.
  • Hashimoto T, Tayama M, Miyazaki Μ, Fujii E, Harada Μ, Miyoshi Η, Tanouchi Μ, Kuroda Υ. (1995). Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 37:398–405.
  • Hennig J, Nauerth A, Friedburg H. (1986). RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833.
  • Henson RN, Shallice T, Dolan RJ. (1999). Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain 122:1367—1381.
  • Hertz-Pannier L, Gaillard WD, Mott SH, Cuenod CA, Bookheimer SY, Weinstein S, Conry J, Papero PH, Schiff SJ, Le Bihan D, Theodore WH. (1997). Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48:1003–1012.
  • Hickok G, Love T, Swinney D, Wong EC, Buxton RB. (1997). Functional MR imaging during auditory word perception: a single-trial presentation paradigm. Brain Lang 58:197–201.
  • Hofman E, Preibisch C, Knaus C, Muller J, Kremser C, Teissl C. (1999). Noninvasive direct stimulation of the cochlear nerve for functional MR imaging of the auditory cortex. Am J Neuroradiol 20:1970–1972.
  • Holodny AI, Schulder Μ, Liu WC, Maldjian JA, Kalnin AJ. (1999). Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. Am J Neuroradiol 20:609–612.
  • Hoshino Y, Yoshikawa K, Inoue Y, Asai S, Nakamura T, Ogino Τ, Umeda Μ, Iwamoto A. (1999). Reproducibility of short echo time proton magnetic resonance spectroscopy using point-resolved spatially localized spectroscopy sequence in normal human brains. Radiat Med 17:115–120.
  • Howard MA III, Volkov IO, Abbas PJ, Damasio H, Ollendiek MC, Granner ΜΑ. (1996). A chronic micro-electrode investigation of the tonotopic organization of human auditory cortex. Brain Res 724:260–264.
  • Howard R, David A, Woodruff P, Meilers I, Wright J, Brammer M, Bullmore E, Williams S. (1997). Seeing visual hallucinations with functional magnetic resonance imaging. Dement Geriatr Cogn Disord 8:73–77.
  • Howseman AM, Bowtell RW (1999). Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philos Trans R Soc Lond Β Biol Sci 354:1179–1194.
  • Huckins SC, Turner CW, Doherty KA, Fonte MM, Szev-erenyi NM. (1998). Functional magnetic resonance imaging measures of blood flow patterns in human auditory cortex in response to sound. J Speech Lang Hear Res 41:538–548.
  • Hykin J, Moore R, Duncan K, Clare S, Baker P, Johnson I, Bowtell R, Mansfield P, Gowland P. (1999). Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet 354: 645–646.
  • Ingvar M. (1999). Pain and functional imaging. Philos Trans R Soc Lond Β Biol Sci 354:1347–1358.
  • Jackson GD, Connelly A, Cross JH, Gordon I, Gadian DG. (1994). Functional magnetic resonance imaging of focal seizures. Neurology 44:850–856.
  • Jackson JJ, Meyer CH, Nishimura DG, Macovski A. (1991). Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imag 10:473–178.
  • Jäncke L, Shah NJ, Posse S, Grosse-Ryuken M, Müller-Gärtner H-W. (1998). Intensity coding of auditory stimuli: an /MRI study. Neuropsychologia 36:875–883.
  • Jäncke L, Mirzazade S, Shah NJ. (1999). Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neurosci Lett 266:125–128.
  • Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT. (1988). Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci 102:811–822.
  • Jung RE, Brooks WM, Yeo RA, Chiulli SJ, Weers DC, Sibbitt WL Jr. (1999a). Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proc R Soc Lond Β Biol Sci 266:1375–1379.
  • Jung RE, Yeo RA, Chiulli SJ, Sibbitt WL Jr, Weers DC, Hart BL, Brooks WM. (1999b). Biochemical markers of cognition: a proton MR spectroscopy study of normal human brain. Neuroreport 10:3327–3331.
  • Kaas JH, Hackett TA. (1999). 'What' and 'where' processing in auditory cortex. Nat Neurosci 2:1045–1047.
  • Kaas JH, Hackett TA, Tramo MJ. (1999). Auditory processing in primate cerebral cortex. Curr Opin Neurosci 9:164–170.
  • Kaltenbach JA, Godfrey DA, McCaslin DL, Squire AB. (1996). Changes in spontaneous activity and chemistry of the cochlear nucleus following intense sound exposure. In: Reich GE, Vernon JE, eds. Proceedings of the Fifth International Tinnitus Seminar. Portland: American Tinnitus Association, 457–466.
  • Kaltenbach JA, Heffher HE, Annan CE. (1999). Effects of intense sound on spontaneous activity in the dorsal cochlear nucleus and its relation to tinnitus. In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: Tinnitus and Hyperacusis Centre, 133–138.
  • Kami A, Gundela M, Jezzard P, Adams MM, Turner R, Ungerleider LG. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158.
  • Kauer JS, Nemitz JW, Sasaki CT. (1982). Tinnitus aurium: fact. . . or fancy? Laryngoscope 92:1401–1407.
  • Kennan RP, Zhong J, Gore JC. (1994). Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31:9–21.
  • Khalaffa O, Bushara O, Weeks RA, Kenji I, Catalan MJ, Tian B, Rauschecker JP, Hallet M. (1999). Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neuroscience 2:759–766.
  • Kim S, Hu X, Adriany G, Ugurbil K. (1996). Fast interleaved echo-planar imaging with high resolution anatomic and functional images at 4 Tesla. Magn Reson Med 35:895–902.
  • Kim S-G, Ugurbil K. (1997). Functional magnetic resonance imaging of the human brain. J Neurosci Methods 74:229–243.
  • Koizuka I, Yano H, Nagahara M, Mochizuki R, Seo R, Shimada K, Kubo T, Nogawa T. (1994). Functional imaging of the human olfactory cortex by magnetic resonance imaging. ORL J Oto rhinolaryngol Relat Spec 56:273–275.
  • Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Cosgrove GR, Rosen BR. (1997). Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48:1406–1416.
  • Kumar A, Welti D, Ernst RR. (1975). NMR Fourier zeug-matography. J Magn Reson 18:69–83.
  • Kuppusamy K, Lin W, Haacke EM. (1997). Statistical assessment of cross correlation and variance methods and the importance of electrocardiogram gating in functional magnetic resonance imaging. Magn Reson Imaging 15:169–181.
  • Kwong KK, Belliveau JW, Chesler DA, Goldberg JE, Wiesskoff RM, Poncelet BP, Kennedy KW, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen R. (1992a). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sei U S A 89:5675–5679.
  • Kwong KK, Wanke J, Donahue KM, Davis TL, Rosen BR. (1992b). EPI imaging of global increase of brain MR signal with breath-hold preceded by breathing 02. Magn Reson Med 33:448–452.
  • Lange N. (1999). Statistical procedures for functional MRI. In: Moonen CTW, Bandettini PA, eds. Functional MRI. New York: Springer-Verlag, 301–335.
  • Larisch R, Kötter R, Kehren F, Tosch Μ, Shah NJ, Kalveram KT, Jäncke L, Müller-Gärtner H-W. (1999). Motivation effects in a dichotic listening task as evident from functional magnetic resonance imaging in human subjects. Neurosci Lett 267:29–32.
  • Latchaw RE, Hu X, Ugurbil K, Hall WA, Madison MT, Heros RC. (1995). Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery 37:619–625.
  • Lauterbur PC. (1973). Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191.
  • LeBihan D, Kami A. (1995). Applications of magnetic resonance imaging to the study of human brain function. Curr Opin Neurobiol 5:231–237.
  • Lee AT, Glover GH, Meyer CH. (1995). Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging. Magn Reson Med 33:745–754.
  • Lee BC, Kuppusamy K, Grueneich R, El-Ghazzawy O, Gordon RE, Lin W, Haacke EM. (1999). Hemispheric language dominance in children demonstrated by functional magnetic resonance imaging. J Child Neurol 14:78–82.
  • Lee CC. (1999). Assessment of functional MR imaging in neurosurgical planning. Am JNeuroradiol 20:1511–1519.
  • Lennox BR, Bert S, Park G, Jones PB, Morris PG. (1999). Spatial and temporal mapping of neural activity associated with auditory hallucinations. Lancet 353:644.
  • Levine RA. (1999). Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am J Otolaryngol 20:351–362.
  • Levine RA, Melcher JR, Sigalovsky I, Guinan JJ. (1998). Abnormal inferior colliculus activation in subjects with lateralized tinnitus. Ann Neurol 44:441.
  • Levy LM, Henkin RI, Hutter A, Lin CS, Martins D, Schellinger D. (1997). Functional MRI of human olfaction. J Comput Assist Tomogr 21:849–856.
  • Liu HL, Gao JH. (1999). Perfusion-based event-related functional MRI. Magn Reson Med 42:1011–1013.
  • Lobel E, Kleine JF, LeBihan D, Leroywillig A, Berthoz A. (1998). Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80:2699–2709.
  • Lockwood AH, Salvi RJ, Coad ML, Towsley MA, Wack DS, Murphy BW. (1998). The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50:114–120.
  • Lockwood AH, Burkard RF, Salvi RJ, Arnold SA, Reyes SA, Coad ML, Lincoff NS, Galanowicz PJ (1999a). Positron emission tomography (PET) studies of gaze-evoked tinnitus. Assoc Res Otolaryngol 22:119.
  • Lockwood AH, Salvi RJ, Burkard RF, Galantowicz PJ, Coad ML, Wack DS. (1999b). Neuroanatomy of tinnitus. ScandAudiol 28: Suppl 51:47–52.
  • Lu ZL, Sperling G. (1995). The functional architecture of visual motion perception. Vision Res 35:2697–2722.
  • Magistretti PJ, Pellerin L. (1999). Regulation of cerebral energy metabolism. In: Moonen CTW, Bandettini PA, eds. Functional MRI. New York: Springer-Verlag, 25–34.
  • Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. (1997). Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sei USA 94:10979–10984.
  • Maldjian MJ, Atlas SW, Howard RW, Greenstein E, Alsop D, Detre JA, Listerud J, D'Esposito M, Flamm ES. (1996). Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 84:477–483.
  • Malonek D, Grinvald A. (1996). Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 27:351–354.
  • Mansfield P. (1977). Multi-planar image formation using NMR spin-echoes. J Phys C 10:L55–L58.
  • Mattay VS, Weinberger DR. (1999). Organization of the human motor system as studied by functional magnetic resonance imaging. Eur J Radiol 30:105–114.
  • Mattson J, Simon M. (1996). The Pioneers of NMR and Magnetic Resonance in Medicine: The Story of MRI. New York: Dean.
  • McCarthy G. (1999). Event related potentials and functional MRI: a comparison of localization in sensory,
  • perceptual and cognitive tasks. Electroencephalogr Clin Neurophysiol Suppl 49:3–12.
  • McJury M, Stewart RW, Crawford D, Toma E. (1997). The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: some initial results. Magn Res Imaging 15:319–322.
  • McKinnon GC. (1993). Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med 30:609–616.
  • Melcher JR, Talavage TM, Harms MP. (1999a). Functional MRI of the auditory system. In: Moonen CTW, Bandettini P, eds. Functional MRI. Berlin: Springer-Verlag, 393–406.
  • Melcher JR, Sigalovsky I, Levine RA. (1999b). Tinnitus-related fMRI activation patterns in human auditory nuclei. In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: Tinnitus and Hyperacusis Centre, 166–170.
  • Melcher JR, Sigalovsky I, Guinan JJ Jr, Levine RA. (2000). Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 83:1058–1072.
  • Menon RS, Ogawa S, Tank DW, Ugurbil K. (1993). 4 Tesla gradient recalled echo characteristics of photic stimulation induced signal changes in the human primary visual cortex. Magn Reson Med 30:380–386.
  • Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K. (1995). BOLD functional MRI at 4 Tesla including a capillary bed contribution echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33:453–459.
  • Meyerhoff WL. (1982). Discussion of: Kauer JS, Nemitz JW, Saski CT. (1982). Tinnitus aurium: fact...or fancy? Laryngoscope 92:1407.
  • Milien SJ, Haughton VM, Yetkin S. (1995). Functional magnetic resonance imaging of central auditory pathway following speech and pure tone stimuli. Laryngoscope 105:1305–1310.
  • Mirz F, Ovesen T, Ishizu K, Johannsen P, Madsen S, Gjedde A, Pedersen CB. (1999a). Stimulus-dependent central processing of auditory stimuli. Scand Audiol 28:161–169.
  • Mirz F, Pedersen CB, Ovesen T, Madsen S, Gjedde A. (1999b). Positron emission tomography of cortical centers of tinnitus. Hear Res 134:133–144.
  • Mohr CM, King WM, Freeman AJ, Briggs RW, Leonard CM. (1999). Influence of speech stimuli intensity on the activation of auditory cortex investigated with functional magnetic resonance imaging. J Acoust Soc Am 105:2738–2745.
  • Møller AR. (1997). Similarities between chronic pain and tinnitus. Am J Otol 18:577–585.
  • Möller AR. (1999). Pathophysiology of severe tinnitus and chronic pain. In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: Tinnitus and Hyperacusis Centre, 26–31.
  • Moonen CTW, Liu G, van Gelderen P, Sobering G. (1992). A fast gradient-recalled MRI technique with increased
  • sensitivity to dynamic susceptibility effects. Magn Reson Med 26:184–189.
  • Moonen CTW, van Gelderen P. (1997). Optimal efficiency of 3D and 2D BOLD gradient echo fMRI methods. In: Moonen CTW, Bandettini PA, eds. Functional MRI. New York: Springer-Verlag, 161–172.
  • Moonen CTW, van Zijl PC, Frank JA, Le Bihan D, Becker ED. (1990). Functional magnetic resonance imaging in medicine and physiology. Science 250:53–61.
  • Morris GL, Mueller WM, Yetkin FZ Haughton VM, Ham• meke TA, Swanson S, Rao SM, Jesmanowicz A, Estkowski LD, Bandettini PA, Wong C, Hyde JS. (1994). Functional magnetic resonance imaging in partial epilepsy. Epilepsia 35:1194–1198.
  • Moseley ME, de CrespignyA, Spielman DM. (1996). Magnetic resonance imaging of human brain function. Surg Neurol 45:385–391.
  • Nobre AC, Plunkett K. (1997). The neural system of language: structure and development. Curr Opin Neurobiol 7:262–268.
  • Ogawa S, Lee TM, Ky AR, Tank DW. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872.
  • Ogawa S, Tank DW, Menon R, Ellerman J, Kim S, Merkle H, Ugurbil K. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955.
  • Ogawa S, Menon RS, Km S-G, Ugurbil K. (1998). On the characteristics of functional magnetic resonance imaging of the brain. Ann Rev Biophys Biomol Struct 27:447–174.
  • Opitz Β, Mecklinger A, von Cramon DY, Kruggel F. (1999). Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiol 36:142–147.
  • Oshiro Y, Fuijita N, Tanaka H, Hirabuki N, Nakamura H, Yoshiya I. (1998). Functional mapping of pain-related activation with echo-planar MRI: significance of the SII-insular region. Neuroreport 13:2285–2289.
  • Oestreicher E, Willoch F, Lamm K, Arnold W, Bartenstein P. (1999a). Changes in metabolic glucose rate in the central nervous system induced tinnitus. Assoc Res Oto-larygol 22:42.
  • Ostreicher Ε, Willoch F, Lamm Κ, Arnold W, Bartenstein P. (1999b). Changes in metabolic glucose rate in the central nervous system induced by tinnitus. In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: Tinnitus and Hyperacusis Centre, 171–174.
  • Pandya DN. (1995). Anatomy of the auditory cortex. Rev Neurol (Paris) 151:486–494.
  • Paulesu E, Harrison J, Baron-Cohen S, Watson JDG, Goldstein L, Heather RSJ, Frackowiak RSJ, Frith CD. (1995). The physiology of coloured hearing: a PET activation study of colour-word synesthesia. Brain 118:661–676.
  • Phelps ME, Kuhl DE, Mazziotta JC. (1981). Metabolic mapping of the brain's response to visual stimulation. Studies in humans. Science 211:1445–1448.
  • Pickens DR. (1988). Gating: cardiac and respiratory. In: Partain CL, Price RR, Patton JA, Kulkarni MV, James AE Jr, eds. Magnetic Resonance Imaging. Vol. 2. 2nd Ed. Philadelphia: WB Saunders, 1399–1410.
  • Porro CA, Cettolo V, Francescato MP, Baraldi P. (1998). Temporal and intensity coding of pain in human cortex. J Neurophysiol 80:3312–3320.
  • Posner MI. (1994). Attention: the mechanisms of consciousness. Proc Natl Acad Sci USA 91:7398–7403.
  • Pugh KR, Shaywitz BA, Shaywitz SE, Fulbright RK, Byrd D, Skudlarski O, Shankweiler DP, Katz L, Constable RT, Fletcher J, Lacadie C, Marchione K, Gore JC. (1996). Auditory selective attention: an fMRI investigation. Neuroimage 4:159–173.
  • Purcell EM, Torrey HC, Pound RV (1946). Resonance absorption by nuclear magnetic moment in a solid. Physiol Rev 69:37–38.
  • Rabe-Hesketh S, Bullmore ET, Brammer MJ. (1997). The analysis of functional magnetic resonance images. Stat Methods Med Res 6:215–237.
  • Rademacher J, Caviness VS Jr, Steinmetz Η, Galaburda AM. (1993). Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329.
  • Rae C, Lee MA, Dixon RM, Blamire AM, Thompson CH, Styles P, Talcott J, Richardson AJ, Stein JF. (1998). Metabolic abnormalities in developmental dyslexia detected by Ή magnetic resonance imaging. Lancet 351:1849–1852.
  • Raichle ME. (1998). Behind the scenes of functional brain imaging. A historical and physiological perspective. Proc Natl Acad Sci USA 95:765–772.
  • Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. (1983). Brain blood flow measured within intravenous H2 15O. II. Implementation and validation. J Nucl Med 24:790–798.
  • Rao SM, Bandettini PA, Binder JR, Bobholz JA, Ham-meke TA, Stein EA, Hyde JS. (1996). Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16:1250–1254.
  • Rauschecker JP (1998a). Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521.
  • Rauschecker JP. (1998b). Parallel processing in the auditory cortex of primates. Audiol Neurootol 3:86–103.
  • Ravicz ME, Melcher JR. (1998). Reducing imager-generated acoustic noise at the ear during functional magnetic resonance imaging (fMRI): passive attenuation. Assoc Res Otolaryngol 21:208.
  • Richards TL, Gates GA, Gardner JC, Merrill T, Hayes CE, Panagiotides H, Serafini S, Rubel EW. (1997). Functional MR spectroscopy of the auditory cortex in healthy subjects and patients with sudden hearing loss. Am J Neuroradiol 18:611–620.
  • Richards TL, Dager SR, Corina D, Sarafini S, Heide AC, Steury K, Strauss W, Hayes CE, Abbott RD, Craft S, Shaw D, Posse S, Beringer VW. (1999). Dyslexic children have abnormal brain lactate response to reading-related language tasks. Am J Neuroradiol 20:1393–1398.
  • Richardson AJ, Cox IJ, Sargentoni J, Puri BK. (1997). Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. Nucl Magn Reson Biomed 10:309—314.
  • Righini A, de Divitis 0, Prinster A, Spagnoli D, Appollo-nio I, Bello L Scifo P, Tomei G, Villeni R, Fazio F, Leonardi M. (1996). Functional MRI: primary motor cortex localization in patients with brain tumors. J Comput Assist Tomogr 20:702–708.
  • Rivier F, Clarke S. (1997). Cytochrome oxidase, acetylcholinesterase, and NADPH-Diaphorase staining for human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6:288–304.
  • Robson MD, Dorosz JL, Gore JC. (1998). Measures of the temporal/MRI response of the human auditory cortex to trains of tones. Neuroimage 7:185–198.
  • Romanski LM, Bates JF, Goldman-Rakic PS. (1999a). Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157.
  • Romanski LM, Tian Β, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP. (1999b). Dual streams of auditory afferente target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136.
  • Rosen BR, Buckner RL, Dale AM. (1998). Event-related functional MRI: past, present and future. Proc Natl Acad Sci U SA 95:773–780.
  • Rossini PM, Caltagirone C, Castriota-Scanderbeg A, Cicinelli P, Del Gratta C, Demartin M, Pizzella V, Traversa R, Romani GL. (1998). Hand motor cortical area reorganization in stroke: a study with fMRI, MEG and TCS maps. Neuroreport 9:2141–2146.
  • Salvi RJ, Lockwood AH, Coad ML, Wack DS, Burkhard R, Arnold S, Galantowicz P. (1999). Positron emission tomography identifies neuroanatomical sites associated with tinnitus modified by oral-facial and eye-movements. In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: Tinnitus and Hyperacusis Centre, 175–180.
  • Sasaki CT, Kauer JS, Babitz L. (1980). Differential [14C]2–deoxyglucose uptake after deafferentation of the mammalian auditory pathway—a model for examining tinnitus. Brain Res 194:511–516.
  • Savoy RL, Ravicz ME, Gollub R. (1999). The psychophysiological laboratory in the magnet: stimulus delivery, response recording, and safety. In: Moonen CTW, Bandettini PA, eds. Functional MRI. New York: Springer-Verlag 347–365.
  • Schlosser MJ, Luby M, Spencer DD, Awad IA, McCarthy G. (1999). Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg 91:626–635.
  • Seidman LJ, Breiter HC, Goodman JM, Goldstein JM, Woodruff PW, O'Craven K, Savoy R, Tsuang MT, Rosen BR. (1998). A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology 12:505—518.
  • Serano MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–892.
  • Shaywitz BA, Shaywitz SA, Pugh KR, Constable RT, Skudlarski P, Fulbright RK, Bronen RA, Fletcher JM, Shankweiler DP, Katz L, Gore JC. (1995). Sex differences in the functional organization of the brain for language. Nature 373:607–609.
  • Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencil WE, Shankweiler D, Liberman A, Skudlarski P, Fleteher JM, Katz L, Marchione KE, Lacadie C, Gatenby C, Gore JC. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci USA 95:2636–2641.
  • Shulman RG, Blamire AM, Rothman DL, McCarthy G. (1993). Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proc Natl Acad Sci USA 90:3127–3133.
  • Sigalovsky IS, Melcher JR, Levine RA. (1999). Growth of fMRI activation with stimulus level in the inferior col-liculi: implications for understanding tinnitus-related abnormalities. In: Hazell J, ed. Proceedings of the Sixth International Tinnitus Seminar. London: Tinnitus and Hyperacusis Centre, 317–322.
  • Silbersweig DA, Stern E. (1996). Functional neuroimaging of hallucinations in schizophrenia: toward an integration of bottom-up and top-down approaches. Mol Psychiatry 1:367–375.
  • Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootooknk S, Seaward J, McKenna P, Chua SE, Schnorr L, Jones T, Frackowiak RST. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179.
  • Sobel N, Prabhakaran V, Zhao Z, Desmond JE, Glover GH, Sullivan EV, Gabrieli JDE. (2000). Time course of odorant-induced activation in the human primary olfactory cortex. J Neurophysiol 83:537–551.
  • Springer JA, Binder JR, Hammecke TA, Swanson SJ, Frost JA, Bellgowan PS, Brewer CC, Perry HM, Morris GL, Mueller WM. (1999). Language dominance in neu-rologically normal and epilepsy subjects: a functional MRI study. Brain 122:2033–2046.
  • Strainer JC, Ulmer JL, Yetkin FZ, Haughton VM, Daniels DL, Milien SJ. (1997). Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. Am J Neuroradiol 18:601–610.
  • Syka J, Hajek M, Dezortova M, Burian M, Jilek M. (1998). In-vivo quantification of metabolites in the human auditory cortex with proton magnetic resonance spectroscopy. Assoc Res Otolaryngol 21:35.
  • Szechtman H, Woody E, Bowers KS, Nahmias C. (1998). Where the imaginal appears real: a positron emission tomography study of auditory hallucinations. Proc Natl Acad Sci USA 95:1956–1960.
  • Talavage TM, Benson RR, Galburda AM, Rosen BR. (1996). Evidence for multiple tonotopic fields in human auditory cortex. Proc Int Soc Magn Reson Med 4:1842.
  • Talavage TM, Ledden PJ, Sereno MI, Rosen BR, Dale AM. (1997). Multiple phase-encoded tonotopic maps in human auditory cortex. Neuroimage 5:S8.
  • Talavage TM, Edmister WB, Ledden PJ, Weiskoff RM. (1999). Quantitative assessment of auditory cortex responses induced by imager acoustic noise. Hum Brain Map 7:79–88.
  • Thulborn KR, Waterton JC, Matthews PH, Radda GK. (1982). Oxygenation dependence of the transverse relaxation rate of water protons in whole-blood at high field. Biochim Biophys Acta 714:265–270.
  • Thulborn KR, Carpenter PA, Just MA. (1999). Plasticity of language-related brain function during functional recovery from stroke. Stroke 30:749–754.
  • Toga AW, Mazziotta JC. (1996). Brain Mapping: The Methods. San Diego: Academic Press.
  • Toni I, Krams Μ, Turner R, Passingham RE. (1998). The time course of changes during motor sequence learning: a whole-brain/MRI study. Neuroimage 8:50–61.
  • Tonndorf J. (1987). Analogy between tinnitus and pain: a suggestion for a physiological basis of chronic tinnitus. Hear Res 28:271–275.
  • Treede RD, Kenshalo DR, Gracely RH, Jones AK. (1999). The cortical representation of pain. Pain 79:105–111.
  • Truy E. (1999). Neuro-functional imaging and profound deafness. Int J Pediatr Otorhinolaryngol 47:131–136.
  • Turner R, Jezzard P, Wen H, Kwong KK, LeBihan D, Zef-firo T, Balaban R. (1993). Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxy-genation contrast EPI. Magn Reson Med 29:277–279.
  • Turner R, Howseman A, Rees GE, Josephs O, Friston Κ. (1998). Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res 123:5–12.
  • Ulualp SO, Biswal BB, Yetkin FZ, Kidder TM. (1998). Functional magnetic resonance imaging of auditory cortex in children. Laryngoscope 108:1782–1786.
  • van Gelderen P, Ramsey N, Liu G, Duyn J, Frank J, Weinberger DR, Moonen CTW. (1995). Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5T scanner. Proc Natl Acad Sci USA 92:6906–6910.
  • Vogt ΒΑ, Finch DM, Olson CR. (1992). Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443.
  • Voyvodic JT. (1999). Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. Neuroimage 10:91–106.
  • Wall M, Rosenberg M, Richardson D. (1987). Gaze-evoked tinnitus. Neurology 37:1034–1036.
  • Warrach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangoraj V, Edelman RR, Schomer DL. (1996). EEG-triggered echo-planar functional MRI in epilepsy. Neurology 47:89–93.
  • Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR. (1994). Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31: 601–610.
  • Wilichowski E, Pouwels PJW, Frahm J, Hanefeld F. (1999). Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics 30:256–263.
  • Williams DS, Detre JA, Leigh JS, Koretsky AP. (1992). Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89: 212–216.
  • Woodruff PW, Wright IC, Bullmore ET, Brammer M, Howard RJ, Williams SC, Shapleske J, Rossell S, David AS, McGuire PK, Murray RM. (1997). Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study. Am J Psychiatry 154:1676–1682.
  • Xiong J, Gao JN, Lancaster JL, Fox PT. (1996). Assessment and optimization of functional MRI analyses. Hum Brain Map 4:153–167.
  • Yablonsky DA, Haacke EM. (1994). Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763.
  • Yoo SS, Guttmann CR, Zhao L, Panych LP. (1999). Realtime adaptive functional MRI. Neuroimage 10:596–606.
  • Yoshiura T, Zhong J, Shibata DK, Kwok WE, Shier DA, Numaguchi Υ (1999). Functional MRI study of auditory and visual oddball tasks. Neuroreport 10:1683–1688.