RSS-Feed abonnieren

DOI: 10.1055/s-0042-1749108
Role of Dual-Energy Computed Tomography in Urolithiasis

Abstract
Objectives The objectives of this study are to describe the role of dual-energy computed tomography (DECT) in evaluation of renal stones in current practice and elaborate the imaging findings that need to be reported to help surgeons make an appropriate management strategy for renal stones.
Background Nephrolithiasis is a global problem, affecting people across geographical, cultural, and economic boundaries. Renal stones can be accurately diagnosed on computed tomography.
Discussion With the development of DECT, renal stones can now be better characterized in terms of stone burden, stone composition, and stone fragility.
Conclusion These parameters are helpful to treating surgeons in not only planning an appropriate management for patient but also in predicting the success of the various procedures such as extracorporeal shock wave lithotripsy, flexible ureterorenoscopy, or percutaneous nephrolithotomy. Familiarity with recent developments will help radiologists give an apt description of renal stone to meet the requirements of treating surgeon.
Keywords
dual-energy ratio - dual-energy computed tomography - linear attenuation coefficient - nephrolithiasis - skin-to-stone distance - stone attenuation value - stone burden - stone fragilityPublikationsverlauf
Artikel online veröffentlicht:
27. September 2022
© 2022. Indian Society of Gastrointestinal and Abdominal Radiology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 2010; 12 (2-3): e86-e96
- 2 McCollough CH, Leng S, Yu L, Fletcher JG. Dual-and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015; 276 (03) 637-653
- 3 Gottlieb RH, La TC, Erturk EN. et al. CT in detecting urinary tract calculi: influence on patient imaging and clinical outcomes. Radiology 2002; 225 (02) 441-449
- 4 Miller NL, Lingeman JE. Management of kidney stones. BMJ 2007; 334 (7591): 468-472
- 5 Ramakumar S, Segura JW. Renal calculi. Percutaneous management. Urol Clin North Am 2000; 27 (04) 617-622
- 6 Nakada SY, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniak M. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology 2000; 55 (06) 816-819
- 7 Graser A, Johnson TR, Bader M. et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 2008; 43 (02) 112-119
- 8 Boll DT, Patil NA, Paulson EK. et al. Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition–pilot study. Radiology 2009; 250 (03) 813-820
- 9 Mileto A, Ananthakrishnan L, Morgan DE, Yeh BM, Marin D, Kambadakone AR. Clinical implementation of dual-energy CT for gastrointestinal imaging. AJR Am J Roentgenol 2021; 217 (03) 651-663
- 10 Thomas C, Patschan O, Ketelsen D. et al. Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol 2009; 19 (06) 1553-1559
- 11 Preminger GM, Assimos DG, Lingeman JE, Nakada SY, Pearle MS, Wolf Jr JS. AUA Nephrolithiasis Guideline Panel). Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol 2005; 173 (06) 1991-2000
- 12 Lingeman JE, Coury TA, Newman DM. et al. Comparison of results and morbidity of percutaneous nephrostolithotomy and extracorporeal shock wave lithotripsy. J Urol 1987; 138 (03) 485-490
- 13 Weld KJ, Montiglio C, Morris MS, Bush AC, Cespedes RD. Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics. Urology 2007; 70 (06) 1043-1046 , discussion 1046–1047
- 14 Pittomvils G, Vandeursen H, Wevers M. et al. The influence of internal stone structure upon the fracture behaviour of urinary calculi. Ultrasound Med Biol 1994; 20 (08) 803-810
- 15 Cameron MA, Sakhaee K. Uric acid nephrolithiasis. Urol Clin North Am 2007; 34 (03) 335-346
- 16 Renner C, Rassweiler J. Treatment of renal stones by extracorporeal shock wave lithotripsy. Nephron 1999; 81 (Suppl. 01) 71-81
- 17 Saw KC, Lingeman JE. Lesson 20 - management of calyceal stones. AUA Update Series. 1999; 20: 154-159
- 18 Basha MA, AlAzzazy MZ, Enaba MM. Diagnostic validity of dual-energy CT in determination of urolithiasis chemical composition: in vivo analysis. Egypt J Radiol Nucl Med 2018; 49 (02) 499-508
- 19 Acharya S, Goyal A, Bhalla AS, Sharma R, Seth A, Gupta AK. In vivo characterization of urinary calculi on dual-energy CT: going a step ahead with sub-differentiation of calcium stones. Acta Radiol 2015; 56 (07) 881-889
- 20 Mahalingam H, Lal A, Mandal AK, Singh SK, Bhattacharyya S, Khandelwal N. Evaluation of low-dose dual energy computed tomography for in vivo assessment of renal/ureteric calculus composition. Korean J Urol 2015; 56 (08) 587-593
- 21 Stolzmann P, Scheffel H, Rentsch K. et al. Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 2008; 36 (3-4): 133-138
- 22 Dretler SP, Polykoff G. Calcium oxalate stone morphology: fine tuning our therapeutic distinctions. J Urol 1996; 155 (03) 828-833
- 23 Deveci S, Coşkun M, Tekin MI, Peşkircioglu L, Tarhan NC, Ozkardeş H. Spiral computed tomography: role in determination of chemical compositions of pure and mixed urinary stones–an in vitro study. Urology 2004; 64 (02) 237-240
- 24 Müllhaupt G, Engeler DS, Schmid HP, Abt D. How do stone attenuation and skin-to-stone distance in computed tomography influence the performance of shock wave lithotripsy in ureteral stone disease?. BMC Urol 2015; 15 (01) 72
- 25 Wang LJ, Wong YC, Chuang CK. et al. Predictions of outcomes of renal stones after extracorporeal shock wave lithotripsy from stone characteristics determined by unenhanced helical computed tomography: a multivariate analysis. Eur Radiol 2005; 15 (11) 2238-2243
- 26 Gupta NP, Ansari MS, Kesarvani P, Kapoor A, Mukhopadhyay S. Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int 2005; 95 (09) 1285-1288
- 27 Shinde S, Al Balushi Y, Hossny M, Jose S, Al Busaidy S. Factors affecting the outcome of extracorporeal shockwave lithotripsy in urinary stone treatment. Oman Med J 2018; 33 (03) 209-217
- 28 Patel T, Kozakowski K, Hruby G, Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol 2009; 23 (09) 1383-1385
- 29 Wiesenthal JD, Ghiculete D, D'A Honey RJ, Pace KT. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res 2010; 38 (04) 307-313
- 30 Li Y, Li K, Garrett JW, Chen GH. Generation of virtual non-contrast (VNC) image from dual energy CT scans using deep learning. In: Medical Imaging: Physics of Medical Imaging. 2021; 11595:115951E