Semin Respir Crit Care Med 2022; 43(03): 417-425
DOI: 10.1055/s-0042-1749450
Review Article

Mechanical Ventilation during ECMO: Lessons from Clinical Trials and Future Prospects

Gabriele Fior
1   Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.
2   Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
,
Zasha F. Vazquez Colon
3   Department of Pediatrics, Division of Pediatric Critical Care, University of Florida, Shands Children's Hospital, Gainesville, Florida
,
Giles J. Peek
4   Department of Surgery, Congenital Heart Center, Shands Children's Hospital, Gainesville, University of Florida, Gainesville, Florida
,
John F. Fraser
1   Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.
2   Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
5   Intensive Care Unit, St Andrew's War Memorial Hospital and The Wesley Hospital, Uniting Care Hospitals, Brisbane, QLD, Australia
› Author Affiliations

Abstract

Acute Respiratory Distress Syndrome (ARDS) accounts for 10% of ICU admissions and affects 3 million patients each year. Despite decades of research, it is still associated with one of the highest mortality rates in the critically ill. Advances in supportive care, innovations in technologies and insights from recent clinical trials have contributed to improved outcomes and a renewed interest in the scope and use of Extracorporeal life support (ECLS) as a treatment for severe ARDS, including high flow veno-venous Extracorporeal Membrane Oxygenation (VV-ECMO) and low flow Extracorporeal Carbon Dioxide Removal (ECCO2R). The rationale being that extracorporeal gas exchange allows the use of lung protective ventilator settings, thereby minimizing ventilator-induced lung injury (VILI). Ventilation strategies are adapted to the patient's condition during the different stages of ECMO support. Several areas in the management of mechanical ventilation in patients on ECMO, such as the best ventilator mode, extubation-decannulation sequence and tracheostomy timing, are tailored to the patients' recovery. Reduction in sedation allowing mobilization, nutrition and early rehabilitation are subsequent therapeutic goals after lung rest has been achieved.



Publication History

Article published online:
27 June 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Bellani G, Laffey JG, Pham T. et al. LUNG SAFE Investigators, ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315 (08) 788-800
  • 2 Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2 (7511): 319-323
  • 3 Ware LB, Fremont RD, Bastarache JA, Calfee CS, Matthay MA. Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur Respir J 2010; 35 (02) 331-337
  • 4 Herridge MS, Tansey CM, Matté A. et al. Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011; 364 (14) 1293-1304
  • 5 Fan E, Dowdy DW, Colantuoni E. et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med 2014; 42 (04) 849-859
  • 6 Lassen HC. A preliminary report on the 1952 epidemic of poliomyelitis in Copenhagen with special reference to the treatment of acute respiratory insufficiency. Lancet 1953; 1 (6749): 37-41
  • 7 Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369 (22) 2126-2136
  • 8 Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA 2018; 319 (07) 698-710
  • 9 Chiumello D, Carlesso E, Cadringher P. et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 2008; 178 (04) 346-355
  • 10 Goligher EC, Dres M, Fan E. et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 2018; 197 (02) 204-213
  • 11 Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 1998; 110 (06) 482-488
  • 12 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 13 Yoshida T, Torsani V, Gomes S. et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013; 188 (12) 1420-1427
  • 14 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017; 195 (04) 438-442
  • 15 Beitler JR, Sands SA, Loring SH. et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 2016; 42 (09) 1427-1436
  • 16 Tonetti T, Vasques F, Rapetti F. et al. Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med 2017; 5 (14) 286
  • 17 Gattinoni L, Tonetti T, Cressoni M. et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016; 42 (10) 1567-1575
  • 18 Del Sorbo L, Goligher EC, McAuley DF. et al. Summary of the Experimental Evidence for the Clinical Practice Guideline. Mechanical ventilation in adults with acute respiratory distress syndrome. Ann Am Thorac Soc 2017; 14 (Suppl. 04) S261-S270
  • 19 Munshi L, Del Sorbo L, Adhikari NKJ. et al. Prone position for acute respiratory distress syndrome. a systematic review and meta-analysis. Ann Am Thorac Soc 2017; 14 (Suppl. 04) S280-S288
  • 20 Briel M, Meade M, Mercat A. et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303 (09) 865-873
  • 21 Moss M, Huang DT, Brower RG. et al. National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med 2019; 380 (21) 1997-2008
  • 22 Slutsky AS, Villar J. Early paralytic agents for ARDS? Yes, no, and sometimes. N Engl J Med 2019; 380 (21) 2061-2063
  • 23 Wiedemann HP, Wheeler AP, Bernard GR. et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354 (24) 2564-2575
  • 24 Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med 2002; 165 (02) 242-249
  • 25 Hager DN, Krishnan JA, Hayden DL, Brower RG. ARDS Clinical Trials Network. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 2005; 172 (10) 1241-1245
  • 26 Needham DM, Colantuoni E, Mendez-Tellez PA. et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ 2012; 344: e2124
  • 27 Abrams D, Schmidt M, Pham T. et al. Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support. Research and practice. Am J Respir Crit Care Med 2020; 201 (05) 514-525
  • 28 Hill JD, O'Brien TG, Murray JJ. et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med 1972; 286 (12) 629-634
  • 29 Combes A, Schmidt M, Hodgson CL. et al. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med 2020; 46 (12) 2464-2476
  • 30 Fan E, Karagiannidis C. Less is More: not (always) simple-the case of extracorporeal devices in critical care. Intensive Care Med 2019; 45 (10) 1451-1453
  • 31 Gattinoni L, Vassalli F, Romitti F. et al. Extracorporeal gas exchange: when to start and how to end?. Crit Care 2019; 23 (Suppl. 01) 203
  • 32 Zapol WM, Snider MT, Hill JD. et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 1979; 242 (20) 2193-2196
  • 33 Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB. Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 1985; 76 (04) 479-487
  • 34 Field D, Davis C, Elbourne D. et al. UK Collaborative ECMO Trail Group. UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation. Lancet 1996; 348 (9020): 75-82
  • 35 Peek GJ, Killer HM, Reeves R, Sosnowski AW, Firmin RK. Early experience with a polymethyl pentene oxygenator for adult extracorporeal life support. ASAIO J 2002; 48 (05) 480-482
  • 36 Peek GJ, Mugford M, Tiruvoipati R. et al. CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374 (9698): 1351-1363
  • 37 Pham T, Combes A, Rozé H. et al. REVA Research Network. Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis. Am J Respir Crit Care Med 2013; 187 (03) 276-285
  • 38 Patroniti N, Zangrillo A, Pappalardo F. et al. The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 2011; 37 (09) 1447-1457
  • 39 Noah MA, Peek GJ, Finney SJ. et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011; 306 (15) 1659-1668
  • 40 Davies A, Jones D, Bailey M. et al. Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 2009; 302 (17) 1888-1895
  • 41 Combes A, Hajage D, Capellier G. et al. EOLIA Trial Group, REVA, and ECMONet. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 2018; 378 (21) 1965-1975
  • 42 Goligher EC, Tomlinson G, Hajage D. et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA 2018; 320 (21) 2251-2259
  • 43 Combes A, Peek GJ, Hajage D. et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med 2020; 46 (11) 2048-2057
  • 44 Goligher EC, Amato MBP, Slutsky AS. Applying precision medicine to trial design using physiology. Extracorporeal CO2 removal for acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196 (05) 558-568
  • 45 Bein T, Weber-Carstens S, Goldmann A. et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 2013; 39 (05) 847-856
  • 46 Combes A, Fanelli V, Pham T, Ranieri VM. European Society of Intensive Care Medicine Trials Group and the “Strategy of Ultra-Protective lung ventilation with Extracorporeal CO2 Removal for New-Onset moderate to severe ARDS” (SUPERNOVA) investigators. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med 2019; 45 (05) 592-600
  • 47 Terragni PP, Del Sorbo L, Mascia L. et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 2009; 111 (04) 826-835
  • 48 Fanelli V, Ranieri MV, Mancebo J. et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care 2016; 20: 36
  • 49 Schmidt M, Jaber S, Zogheib E, Godet T, Capellier G, Combes A. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care 2018; 22 (01) 122
  • 50 Tonna JE, Abrams D, Brodie D. et al. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): guideline from the extracorporeal life support organization (ELSO). ASAIO J 2021; 67 (06) 601-610
  • 51 Del Sorbo L, Cypel M, Fan E. Extracorporeal life support for adults with severe acute respiratory failure. Lancet Respir Med 2014; 2 (02) 154-164
  • 52 Rozencwajg S, Guihot A, Franchineau G. et al. Ultra-protective ventilation reduces biotrauma in patients on venovenous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Crit Care Med 2019; 47 (11) 1505-1512
  • 53 Schmidt M, Pham T, Arcadipane A. et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome. an international multicenter prospective cohort. Am J Respir Crit Care Med 2019; 200 (08) 1002-1012
  • 54 Quintel M, Busana M, Gattinoni L. Breathing and ventilation during extracorporeal membrane oxygenation: how to find the balance between rest and load. Am J Respir Crit Care Med 2019; 200 (08) 954-956
  • 55 Araos J, Alegria L, Garcia P. et al. Near-apneic ventilation decreases lung injury and fibroproliferation in an acute respiratory distress syndrome model with extracorporeal membrane oxygenation. Am J Respir Crit Care Med 2019; 199 (05) 603-612
  • 56 Grasso S, Stripoli T, Mazzone P. et al. Low respiratory rate plus minimally invasive extracorporeal CO2 removal decreases systemic and pulmonary inflammatory mediators in experimental acute respiratory distress syndrome. Crit Care Med 2014; 42 (06) e451-e460
  • 57 Xia J, Gu S, Li M. et al. Spontaneous breathing in patients with severe acute respiratory distress syndrome receiving prolonged extracorporeal membrane oxygenation. BMC Pulm Med 2019; 19 (01) 237
  • 58 Ellouze O, Lamirel J, Perrot J. et al. Extubation of patients undergoing extracorporeal life support. A retrospective study. Perfusion 2019; 34 (01) 50-57
  • 59 Abrams D, Javidfar J, Farrand E. et al. Early mobilization of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Crit Care 2014; 18 (01) R38
  • 60 Munshi L, Kobayashi T, DeBacker J. et al. Intensive care physiotherapy during extracorporeal membrane oxygenation for acute respiratory distress syndrome. Ann Am Thorac Soc 2017; 14 (02) 246-253
  • 61 Grewal J, Sutt AL, Cornmell G, Shekar K, Fraser J. Safety and putative benefits of tracheostomy tube placement in patients on extracorporeal membrane oxygenation: a single-center experience. J Intensive Care Med 2020; 35 (11) 1153-1161
  • 62 Smith MC, Evans PT, Prendergast KM. et al. Surgical outcomes and complications of bedside tracheostomy in the ICU for patients on ECMO. Perfusion 2022; 37 (01) 26-30
  • 63 Dexter AM, Scott JB. Airway management and ventilator-associated events. Respir Care 2019; 64 (08) 986-993
  • 64 Wang TH, Wu CP, Wang LY. Chest physiotherapy with early mobilization may improve extubation outcome in critically ill patients in the intensive care units. Clin Respir J 2018; 12 (11) 2613-2621
  • 65 Meng L, Wang C, Li J, Zhang J. Early vs late tracheostomy in critically ill patients: a systematic review and meta-analysis. Clin Respir J 2016; 10 (06) 684-692
  • 66 Marhong JD, Telesnicki T, Munshi L, Del Sorbo L, Detsky M, Fan E. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey. Ann Am Thorac Soc 2014; 11 (06) 956-961
  • 67 Camporota L, Nicoletti E, Malafronte M. et al. International survey on the management of mechanical ventilation during ECMO in adults with severe respiratory failure. Minerva Anestesiol 2015; 81 (11) 1170-1183 , 77, 1183
  • 68 Amato MB, Meade MO, Slutsky AS. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 69 Sohn JW, Koh YS, Lim CM. et al. The usefulness of pressure-regulated volume control(prvc) mode in mechanically ventilated patients with unstable respiratory mechanics. Tuberc Respir Dis (Seoul) 1997; 44 (06) 1318-1325
  • 70 Assy J, Mauriat P, Tafer N, Soulier S, El Rassi I. Neurally adjusted ventilatory assist for children on veno-venous ECMO. J Artif Organs 2019; 22 (02) 118-125
  • 71 ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support Extracorporeal Life Support Organization. Version 1.4 August 2017 Ann Arbor, MI, USA. Available at: www.elso.org
  • 72 Brogan TV, Lequier L, Lorusso R, MacLaren G, Peek GJ. Extracorporeal Life Support: The Elso Red Book. Ann Arbor, MI: Extracorporeal Life Support Organization; 2017
  • 73 Guérin C, Reignier J, Richard JC. et al. PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368 (23) 2159-2168
  • 74 Coppo A, Bellani G, Winterton D. et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020; 8 (08) 765-774
  • 75 Munshi L, Fralick M, Fan E. Prone positioning in non-intubated patients with COVID-19: raising the bar. Lancet Respir Med 2020; 8 (08) 744-745
  • 76 Paul V, Patel S, Royse M, Odish M, Malhotra A, Koenig S. Proning in non-intubated (PINI) in times of COVID-19: case series and a review. J Intensive Care Med 2020; 35 (08) 818-824
  • 77 Zaaqoq AM, Barnett AG, Griffee MJ. et al. COVID-19 Critical Care Consortium (COVID Critical). Beneficial effect of prone positioning during venovenous extracorporeal membrane oxygenation for coronavirus disease 2019. Crit Care Med 2022; 50 (02) 275-285
  • 78 Walsh BK, Smallwood CD. Electrical impedance tomography during mechanical ventilation. Respir Care 2016; 61 (10) 1417-1424
  • 79 Alhazzani W, Belley-Cote E, Møller MH. et al. Neuromuscular blockade in patients with ARDS: a rapid practice guideline. Intensive Care Med 2020; 46 (11) 1977-1986
  • 80 deBacker J, Hart N, Fan E. Neuromuscular blockade in the 21st century management of the critically ill patient. Chest 2017; 151 (03) 697-706
  • 81 Jakob SM, Ruokonen E, Grounds RM. et al. Dexmedetomidine for Long-Term Sedation Investigators. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA 2012; 307 (11) 1151-1160
  • 82 Patel M, Altshuler D, Lewis TC. et al. Sedation Requirements in patients on venovenous or venoarterial extracorporeal membrane oxygenation. Ann Pharmacother 2020; 54 (02) 122-130
  • 83 Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J Thorac Dis 2018; 10 (Suppl. 05) S629-S641
  • 84 Ely EW, Truman B, Shintani A. et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 2003; 289 (22) 2983-2991
  • 85 deBacker J, Tamberg E, Munshi L, Burry L, Fan E, Mehta S. sedation practice in extracorporeal membrane oxygenation-treated patients with acute respiratory distress syndrome: a retrospective study. ASAIO J 2018; 64 (04) 544-551
  • 86 Agerstrand C, Abrams D, Bacchetta M, Brodie D. Endotracheal extubation in patients with respiratory failure receiving venovenous ECMO. Extracorporeal Life Support Organization. . Last updated May 2015. Available at: www.elso.org
  • 87 Gattinoni L, Pesenti A, Mascheroni D. et al. Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 1986; 256 (07) 881-886