Subscribe to RSS
DOI: 10.1055/s-0042-1751367
Applications of Alternating Current/Alternating Potential Electrolysis in Organic Synthesis
Abstract
This review summarises the rarely used method of alternating current electrolysis for the synthesis of organic products. Different waveforms have been investigated which opens the possibility for further influence the outcome of the electrolysis by variation of the frequency as well as the highest peak current. In recent years alternating current electrolysis has been applied in increasingly more complex transformations. Especially the functionalisation of (hetero)arenes, functional group manipulation, metathesis reactions, and transition-metal-catalysed cross-coupling reactions were reported in recent years and the results of these and some other investigations are summarized in this review article.
1 Introduction
1.1 Waveforms
1.2 Objectives
1.3 Early Examples of the Optimisation of Alternating Current Electrolysis
2 Recent Applications of Alternating Current Electrolysis for Organic Synthesis
2.1 Substitution Reaction on Arenes
2.2 Nitrogen–Sulfur Bond Formation and Sulfur–Sulfur Bond Metathesis
2.3 Oxidation and Reduction
2.4 Cross-Coupling Reactions
2.5 Frequency Optimisation
3 Conclusion
Key words
alternating current - alternating polarity - electrochemistry - organic synthesis - reactive intermediatesPublication History
Received: 22 June 2022
Accepted after revision: 28 July 2022
Article published online:
28 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 For a recent review specialised on the application of alternating current electrolysis, see: Rodrigo S, Gunasekera D, Mahajan JP, Luo L. Curr. Opin. Electrochem. 2021; 28: 100712
- 2 Malkowsky IM, Rommel CE, Fröhlich R, Griesbach U, Pütter H, Waldvogel SR. Chem. Eur. J. 2006; 12: 7482
- 3 Schopohl MC, Faust A, Mirk D, Fröhlich R, Kataeva O, Waldvogel SR. Eur. J. Org. Chem. 2005; 2987
- 4 Ajeel MA, Aroua MK, Wan Daud WM. A, Mazari SA. Ind. Eng. Chem. Res. 2017; 56: 1652
- 5 Norcott PL, Hammill CL, Noble BB, Robertson JC, Olding A, Bissember AC, Coote ML. J. Am. Chem. Soc. 2019; 141: 15450
- 6 Gattrell M, Kirk DW. J. Electrochem. Soc. 1993; 140: 903
- 7 Takahira Y, Chen M, Kawamata Y, Mykhailiuk P, Nakamura H, Peters BK, Reisberg SH, Li C, Chen L, Hoshikawa T, Shibuguchi T, Baran PS. Synlett 2019; 30: 1178
- 8 Waldvogel SR, Mirk D. Tetrahedron Lett. 2000; 41: 4769
- 9 Wills AG, Poole DL, Alder CM, Reid M. ChemElectroChem 2020; 7: 2771
- 10 Torii S, Inokuchi T, Sugiura T. J. Org. Chem. 1986; 51: 155
- 11 Wirtanen T, Prenzel T, Tessonnier J.-P, Waldvogel SR. Chem. Rev. 2021; 121: 10241
- 12 Drechsel E. J. Prakt. Chem. 1880; 22: 476
- 13 Drechsel E. J. Prakt. Chem. 1884; 29: 229
- 14 Shipley JW, Rogers MT. Can. J. Res. 1939; 17: 147
- 15 Wilson CL, Lippincott WT. J. Electrochem. Soc. 1956; 103: 672
- 16 Fleischmann M, Mansfield JR, Thirsk HR, Wilson HG. E, Wynne-Jones L. Electrochim. Acta 1967; 12: 967
- 17 Lisius JD, Hart PW. J. Electrochem. Soc. 1991; 138: 3678
- 18 Pesco AM, Cheh HY. J. Electrochem. Soc. 1984; 131: 2259
- 19 Remick AE, McCormick HW. J. Electrochem. Soc. 1955; 102: 534
- 20 Bump DD, Remick AE. J. Electrochem. Soc. 1964; 111: 981
- 21 Fedkiw PS, Scott WD. Jr. J. Electrochem. Soc. 1984; 131: 1304
- 22 Remick AE, Marcus RA. J. Electrochem. Soc. 1962; 109: 628
- 23 Alkire RC, Lisius JD. J. Electrochem. Soc. 1985; 132: 1879
- 24 Yu JC, Baizer MM, Nobe K. J. Electrochem. Soc. 1988; 135: 1400
- 25 Blanco DE, Lee B, Modestino MA. Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 17683
- 26 Wang S.-R, Fedkiw PS. J. Electrochem. Soc. 1992; 139: 3151
- 27 Fedkiw PS, Traynelis CL, Wang S.-R. J. Electrochem. Soc. 1988; 135: 2459
- 28 Alkire RC, Tsai JE. J. Electrochem. Soc. 1982; 129: 1157
- 29 Smeltzer JC, Fedkiw PS. J. Electrochem. Soc. 1992; 139: 1358
- 30 Smeltzer JC, Fedkiw PS. J. Electrochem. Soc. 1992; 139: 1366
- 31 Kimura KW, Fritz KE, Kim J, Suntivich J, Abruna HD, Hanrath T. ChemSusChem 2018; 11: 1781
- 32 Kumar B, Brian JP, Atla V, Kumari S, Bertram KA, White RT, Spurgeon JM. ACS Catal. 2016; 6: 4739
- 33 Kunkely H, Merz A, Vogler A. J. Am. Chem. Soc. 1983; 105: 7241
- 34 Schotten C, Taylor CJ, Bourne RA, Chamberlain TW, Nguyen BN, Kapur N, Willans CE. React. Chem. Eng. 2021; 6: 147
- 35 Wang D, Jiang T, Wan H, Chen Z, Qi J, Yang A, Huang Z, Yuan Y, Lei A. Angew. Chem. Int. Ed. 2022; 61: e202201543
- 36 Rodrigo S, Um C, Mixdorf JC, Gunasekera D, Nguyen HM, Luo L. Org. Lett. 2020; 22: 6719
- 37 Nouri-Nigjeh E, Permentier HP, Bischoff R, Bruins AP. Anal. Chem. 2011; 83: 5519
- 38 Lee B, Naito H, Nagao M, Hibino T. Angew. Chem. Int. Ed. 2012; 51: 6961
- 39 Yuan Y, Qi J.-C, Wang D.-X, Chen Z, Wan H, Zhu J.-Y, Yi H, Chowdhury AD, Lei A. CCS Chem. 2022; 4: 2674
- 40 Leading reference: Ashkenasy G, Hermans TH, Otto S, Taylor AF. Chem. Soc. Rev. 2017; 46: 2543
- 41 Sattler LE, Otten CJ, Hilt G. Chem. Eur. J. 2020; 26: 3129
- 42 Fährmann J, Hilt G. Angew. Chem. Int. Ed. 2021; 60: 20313
- 43a Hielscher MM, Gleede B, Waldvogel SR. Electrochim. Acta 2021; 368: 137555
- 43b Babaoglu E, Hilt G. Chem. Eur. J. 2020; 26: 8879
- 43c Leardi R. Anal. Chim. Acta 2009; 652: 161
- 44 Fährmann J, Hermann L, Hilt G. Synthesis 2022; 54: 2005
- 45 Kawamata Y, Hayashi K, Carlson E, Shaji S, Waldmann D, Simmons BJ, Edwards JT, Zapf CW, Saito M, Baran PS. J. Am. Chem. Soc. 2021; 143: 16580
- 46 Wattanakit C, Yutthalekha T, Assavapanumat S, Lapeyre V, Kuhn A. Nat. Commun. 2017; 8: 2087
- 47 Butcha S, Assavapanumat S, Ittisanronnachai S, Lapeyre V, Wattanakit C, Kuhn A. Nat. Commun. 2021; 12: 1314
- 48 Bortnikov EO, Semenov SN. J. Org. Chem. 2021; 86: 782
- 49 Bakshi R, Fedkiw PS. J. Appl. Electrochem. 1993; 23: 715
- 50 Ma Y, Yao X, Zhang L, Ni P, Cheng R, Ye J. Angew. Chem. Int. Ed. 2019; 58: 16548
- 51 Gunasekera D, Mahajan JP, Wanzi Y, Rodrigo S, Liu W, Tan T, Luo L. J. Am. Chem. Soc. 2022; 144: 9874
For recent applications of DoE in organic electrochemistry, see:
For a tutorial for the use of DoE in chemistry, see: