CC BY 4.0 · Synthesis 2023; 55(06): 977-988
DOI: 10.1055/s-0042-1751382
paper

The Synthesis of Novel 7-(Substituted benzyl)-4,5-dihydro[1,2,3]triazolo[1,5-a]pyrazin-6(7H)-ones via Tandem Ugi–Huisgen Reactions

a   Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
,
Mykola A. Тupychak
a   Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
,
Evgeny A. Goreshnik
b   Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
,
Mykola D. Obushak
a   Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
› Author Affiliations
The authors are grateful to the Ministry of Education and Science of Ukraine for financial support of this project (Grant No. 0121U107777).


Abstract

A convenient method for the synthesis of 2-azido-3-arylpropanoic acids via the Meerwein halogenoarylation reaction of acrylic acid esters with diazonium salts, subsequent nucleophilic substitution of the halogen by an azide, and saponification is developed. The newly formed 2-azido-3-arylpropanoic acids react under the conditions of non-catalytic four-component Ugi reactions, leading to the formation of α-azidoamides in good yields. The use of propargylamine as the amine component allows the formation of Ugi adducts with azide and acetylene motifs ready for intramolecular 1,3-dipolar Huisgen cycloaddition to give the [1,2,3]triazolo[1,5-a]pyrazine annulated system. The Ugi reaction is found to give 2-azido-3-aryl-N-(2-oxo-1,2-disubstituted ethyl)-N-(prop-2-yn-1-yl)propanamides at room temperature without azide–alkyne cycloaddition. These dipeptides are converted into 4,5-dihydro[1,2,3]triazolo[1,5-a]pyrazin-6(7H)-ones in near quantitative yields by heating in toluene. However, when the Ugi reaction is carried out by heating, it results in a one-pot Ugi–Huisgen tandem reaction leading to 4,5-dihydro[1,2,3]triazolo[1,5-a]pyrazin-6(7H)-ones in excellent yields. Moreover, the possibility of the incorporation of a bromovinyl fragment (the synthetic equivalent of an acetylene fragment) via the aldehyde component of the Ugi reaction is demonstrated in an alternative preparation of the [1,2,3]triazolo[1,5-a]pyrazine system.

Supporting Information



Publication History

Received: 02 September 2022

Accepted after revision: 27 September 2022

Article published online:
09 November 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pokhodylo N, Shyyka O, Matiychuk V. Sci. Pharm. 2013; 81: 663
    • 1b Pokhodylo N, Shyyka O, Matiychuk V. Med. Chem. Res. 2014; 23: 2426
    • 1c Pokhodylo N, Manko N, Finiuk N, Klyuchivska O, Matiychuk V, Obushak M, Stoika R. J. Mol. Struct. 2021; 1246: 131146
    • 2a Shyyka OY, Pokhodylo NT, Finiuk NS. Biopolym. Cell 2019; 35: 321
    • 2b Pokhodylo N, Shyyka O, Finiuk N, Stoika R. Ukr. Biochem. J. 2020; 92: 23
  • 3 Tupychak M. А, Obushak MD. Chem. Heterocycl. Compd. 2021; 57: 1164
  • 4 Cuevas-Cordobes F, Pericas-Brondo MA. EP Patent 2963041, 2016
  • 5 Oehlrich D, Peschiulli A, Tresadern G, Van Gool M, Vega JA, De Lucas AI, Alonso de Diego SA, Prokopcova H, Austin N, Van Brandt S, Surkyn M, De Cleyn M, Vos A, Rombouts FJ. R, Macdonald G, Moechars D, Gijsen HJ. M, Trabanco AA. ACS Med. Chem. Lett. 2019; 10: 1159
  • 6 Cumming JN, Dykstra KD, Hruza A, Li D, Liu H, Tang H, Taoka BM, Verras A, Walsh SP, Wu WL. WO Patent 2018034918, 2018
  • 7 Li X, He W, Chen Y, He F, Tao W. WO Patent 2019020070, 2019
  • 8 Han X, Lin X, Shen H, Hu T, Zhang Z. WO Patent 2018011163, 2018
  • 9 Nekkanti S, Pooladanda V, Veldandi M, Tokala R, Godugu C, Shankaraiah N. ChemistrySelect 2017; 2: 7210
  • 10 Akritopoulou-Zanze I, Gracias V, Djuric SW. Tetrahedron Lett. 2004; 45: 8439
  • 11 Asgari MS, Sepehri S, Bahadorikhalili S, Ranjbar PR, Rahimi R, Gholami A, Kazemi A, Khoshneviszadeh M, Larijani B, Mahdavi M. Chem. Heterocycl. Compd. 2020; 56: 488
    • 12a Angelo NG, Arora PS. J. Am. Chem. Soc. 2005; 127: 17134
    • 12b Paul A, Bittermann H, Gmeiner P. Tetrahedron 2006; 62: 8919
  • 13 Kolb HC, Walsh JC, Kasi D, Mocharla V, Wang B, Gangadharmath UB, Duclos BA, Chen K, Zhang W, Chen G, Padgett HC, Karimi F, Scott PJ. H, Gao Z, Liang Q, Collier TL, Zhao T, Xia C. WO Patent 2008124703, 2008
  • 14 Geurink PP, Liu N, Spaans MP, Downey SL, van den Nieuwendijk AM. C. H, van der Marel GA, Kisselev AF, Florea BI, Overkleeft HS. J. Med. Chem. 2010; 53: 2319
  • 15 Ingham OJ, Paranal RM, Smith WB, Escobar RA, Yueh H, Snyder T, Porco JA, Bradner JE, Beeler AB. ACS Med. Chem. Lett. 2016; 7: 929
  • 16 Casimiro-Garcia A, Bigge CF, Davis JA, Padalino T, Pulaski J, Ohren JF, McConnell P, Kane CD, Royer LJ, Stevens KA, Auerbach B, Collard W, McGregor C, Song K. Bioorg. Med. Chem. 2009; 17: 7113
  • 17 Lundquist JT. IV, Pelletier JC. Org. Lett. 2001; 3: 781
  • 18 Pokhodylo NT, Martyak RL, Rogovyk MP, Matiychuk VS, Obushak MD. Russ. J. Org. Chem. 2021; 57: 532
  • 19 Pokhodylo NT, Savka RD, Obushak MD. Russ. J. Org. Chem. 2017; 53: 734
  • 20 Fouad MA, Abdel-Hamid H, Ayoup MS. RSC Adv. 2020; 10: 42644
  • 21 Váradi A, Palmer TC, Notis Dardashti R, Majumdar S. Molecules 2015; 21: 19
  • 22 Mei H, Han J, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA. Chem. Eur. J. 2019; 25: 11797
    • 23a Song GT, Qu CH, Lei J, Yan W, Tang DY, Li HY, Chen ZZ, Xu ZG. Adv. Synth. Catal. 2020; 362: 4084
    • 23b Ghoshal A, Ambule MD, Yadav A, Srivastava AK. Asian J. Org. Chem. 2021; 10: 315
    • 23c Bariwal J, Kaur R, Voskressensky LG, Van der Eycken EV. Front. Chem. 2018; 6: 557
    • 23d Tripolitsiotis NP, Thomaidi M, Neochoritis CG. Eur. J. Org. Chem. 2020; 6525
  • 24 Patil P, Ahmadian-Moghaddam M, Dömling A. Green Chem. 2020; 22: 6902
  • 25 Balducci E, Bellucci L, Petricci E, Taddei M, Tafi A. J. Org. Chem. 2009; 74: 1314
  • 26 Single-crystal X-ray diffraction data for compound 9g (A) (CCDC 2194707): C24H26BrN5O2, monoclinic crystal system, space group C2/c, Z = 8, unit cell dimensions: a = 20.3612(6), b = 21.6139(7), c = 10.6307(3) Å, β = 93.042(2)°, V = 4671.8(2) Å3 at 150 K; ρ calcd = 1.412 g/cm3, R[F 2 > 2σ(F 2)] = 0.0369 for 4035 reflections, wR(F 2) = 0.1051 for all 4511 reflections. Diffraction data were collected on a Gemini+ diffractometer with Cu Kα radiation (λ = 1.54184 Å) and an Atlas CCD detector. Single-crystal X-ray diffraction data for compound 9g (B) (CCDC 2194708): C24H26BrN5O2, orthorhombic crystal system, space group Pbcn, Z = 8, unit cell dimensions: a = 27.1556(6), b = 10.9436(2), c = 15.6823(3) Å, V = 4660.43(17) Å3 at 150 K; ρ calcd = 1.415 g/cm3, R[F 2 > 2σ(F 2)] = 0.0395 for 3695 reflections, wR(F 2) = 0.1060 for all 4561 reflections. Diffraction data were collected on a Gemini+ diffractometer with Cu Kα radiation (λ = 1.54184 Å) and an Atlas CCD detector. CCDC 2194707 and 2194708 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures