Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(15): 2319-2324
DOI: 10.1055/s-0042-1751413
DOI: 10.1055/s-0042-1751413
paper
Special Issue dedicated to Prof. David A. Evans
Synthesis of Guaipyridine Alkaloids Rupestine M and L by Cycloaddition/Cycloreversion of an Intermediate 1,4-Oxazinone
This work was supported by the National Institutes of Health (National Institute of General Medical Sciences, R15GM107702 to J.R.S.).
Abstract
A new method to prepare 1,4-oxazinone intermediates was developed based on aza-conjugate addition of β-amino alcohols to electron-deficient alkyne precursors. A tandem intramolecular cycloaddition/cycloreversion reaction sequence was evaluated, leading to the synthesis of the guaipyridine alkaloid natural products rupestine M and L. Starting from (–)-citronellal and thus a known configuration of the C5 stereocenter, a revised absolute configuration of natural rupestine L is suggested based on optical rotation.
Key words
1,4-oxazinones - cycloaddition - cycloreversion - pyridine synthesis - domino reaction - Diels–Alder reaction - natural product synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751413.
- Supporting Information
Publication History
Received: 11 November 2022
Accepted after revision: 04 January 2023
Article published online:
02 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Su Z, Wu H, Yang Y, Aisa HA, Slukhan U, Aripova S. J. Sep. Sci. 2008; 31: 2161
- 2 Su Z, Wu H.-K, He F, Slukhan U, Aisa HA. Helv. Chim. Acta 2010; 93: 33
- 3 He F, Nugroho AE, Wong CP, Hirasawa Y, Shirota O, Morita H, Aisa HA. Chem. Pharm. Bull. 2012; 60: 213
- 4 Büchi G, Goldman IM, Mayo DW. J. Am. Chem. Soc. 1966; 88: 3109
- 5 Hsieh T.-J, Chang F.-R, Chia Y.-C, Chen C.-Y, Chiu H.-F, Wu Y.-C. J. Nat. Prod. 2001; 64: 616
- 6 Craig D, Henry GD. Eur. J. Org. Chem. 2006; 3558
- 7 Shelton PM. M, Grosslight SM, Mulligan BJ, Spargo HV, Saad SS, Vyvyan JR. Tetrahedron 2020; 76: 131500
- 8 Shelton P, Ligon TJ, Dell JM, Yarbrough L, Vyvyan JR. Tetrahedron Lett. 2017; 58: 3478
- 9 Starchman ES, Marshall MS, Vyvyan JR. Tetrahedron Lett. 2020; 61: 151837
- 10 Aibibula P, Yusuf A, Zhao J, Wang B, Huang G, Aisa HA. Chem. Pap. 2021; 75: 5599
- 11 Yusuf A, Zhao J, Wang B, Aibibula P, Aisa HA, Huang G. R. Soc. Open Sci. 2018; 5: 172037
- 12 Zhang C, Wang B, Aibibula P, Zhao J, Aisa HA. Org. Biomol. Chem. 2021; 19: 7081
- 13 Luo X, Wu R, Han X, Tang X, Wang Q, Li P, Li G. RSC Adv. 2022; 12: 2662
- 14 Clery RA, Cason JR. L, Zelenay V. J. Agric. Food Chem. 2016; 64: 4566
- 15 Carrillo Vallejo NA, Scheerer JR. J. Org. Chem. 2021; 86: 5863
- 16 Williamson JB, Smith ER, Scheerer JR. Synlett 2017; 28: 1170
- 17 Margrey KA, Chinn AJ, Laws SW, Pike RD, Scheerer JR. Org. Lett. 2012; 14: 2458
- 18 Zhou Q, Chen X, Ma D. Angew. Chem. Int. Ed. 2010; 49: 3513
- 19 Lu H.-H, Martinez MD, Shenvi RA. Nat. Chem. 2015; 7: 604