CC BY 4.0 · SynOpen 2023; 07(02): 209-242
DOI: 10.1055/s-0042-1751453
review
Virtual Collection Click Chemistry and Drug Discovery

Synthesis of Bioactive Macrocycles Involving Ring-Closing Metathesis Strategy

Nasrin Jahan
,
Inul Ansary
We sincerely thank the Department of Science and Technology and Biotechnology (Government of West Bengal) for providing financial assistance till the year 2022. We also acknowledge the Department of Science and Technology, Ministry of Science and Technology (New Delhi) for providing the HRMS instrument (Thermo Scientific) under FIST programme. N. Jahan is grateful to Government of West Bengal for her research fellowship, Swami Vivekananda Merit Cum Means Fellowship.


Abstract

This review reports the synthesis of various bioactive macrocycles, involving ring-closing metathesis as a key step, developed since ca. 2000. These macrocycles exhibited biological activities such as antiviral, antifungal, antibacterial, and anticancer activities, and more. Thus, their syntheses and utilization are essential for both synthetic organic and medicinal chemists.



Publication History

Received: 31 January 2023

Accepted after revision: 03 April 2023

Article published online:
23 May 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Jahan N, Das A, Ansary I. ChemistrySelect 2022; 7: e202201831
  • 2 Malek F, Harit T, Cherfi M, Kim B. Molecules 2022; 27: 2123
  • 3 Anketell MJ, Sharrock TM, Paterson I. Angew. Chem. Int. Ed. 2020; 59: 1572
  • 4 Cheng-Sanchez I, Carrillo P, Sanchez-Ruiz A, Martínez-Poveda B, Quesada AR, Medina MA, Lopez-Romero JM, Sarabia F. J. Org. Chem. 2018; 83: 5365
  • 5 Waser P, Altmann K. Angew. Chem. Int. Ed. 2020; 59: 17393
  • 6 Cink RD, Lukin KA, Bishop RD, Zhao G, Pelc MJ, Towne TB, Gates BD, Ravn MM, Hill DR, Ding C, Cullen SC, Mei J, Leanna MR, Henle J, Napolitano JG, Nere NK, Chen S, Sheikh A, Kallemeyn JM. Org. Process Res. Dev. 2020; 24: 183
  • 7 Chang C.-F, Flaxman HA, Woo C. Angew. Chem. Int. Ed. 2021; 60: 17045
  • 8 Liniger M, Neuhaus CM, Altmann K.-H. Molecules 2020; 25: 4527
  • 9 Sanguinetti M, Sanfilippo S, Castagnolo D, Sanglard D, Posteraro B, Donzellini G, Botta M. ACS Med. Chem. Lett. 2013; 4: 852
  • 10 Sousbie M, Vivancos M, Brouillette RL, Besserer-Offroy É, Longpre J.-M, Leduc R, Sarret P, Marsault É. J. Med. Chem. 2018; 61: 7103
  • 11 Mackman RL, Steadman VA, Dean DK, Jansa P, Poullennec KG, Appleby T, Austin C, Blakemore CA, Cai R, Cannizzaro C, Chin G, Chiva J.-YC, Dunbar NA, Fliri H, Highton AJ, Hui H, Ji M, Jin H, Karki K, Keats AJ, Lazarides L, Lee Y.-J, Liclican A, Mish M, Murray B, Pettit SB, Pyun P, Sangi M, Santos R, Sanvoisin J, Schmitz U, Schrier A, Siegel D, Sperandio D, Stepan G, Tian Y, Watt GM, Yang H, Schultz BE. J. Med. Chem. 2018; 61: 9473
  • 12 Li H, Scott JP, Chen C.-y, Journet M, Belyk K, Balsells J, Kosjek B, Baxter CA, Stewart GW, Wise C, Alam M, Song ZJ, Tan L. Org. Lett. 2015; 17: 1533
  • 13 Li Z, Partridge J, Silva-Garcia A, Rademacher P, Betz A, Xu Q, Sham H, Hu Y, Shan Y, Liu B, Zhang Y, Shi H, Xu Q, Ma X, Zhang L. ACS Med. Chem. Lett. 2017; 8: 185
  • 14 Estrada-Ortiz N, Neochoritis CG, Twarda-Clapa A, Musielak B, Holak TA, Dömling A. ACS Med. Chem. Lett. 2017; 8: 1025
  • 15 Zhou H, Liu L, Huang J, Bernard D, Karatas H, Navarro A, Lei M, Wang S. J. Med. Chem. 2013; 56: 1113
    • 16a Hurd RN, Shah DH. J. Org. Chem. 1973; 38: 390
    • 16b Tanabe Y, Makita A, Funakoshi S, Hamasaki R, Kawakusu T. Adv. Synth. Catal. 2002; 344: 507
  • 17 Nicolaou KC, Winssinger N, Pastor J, Murphy F. Angew. Chem. Int. Ed. Engl. 1998; 37: 2534 ; Angew. Chem. 1998, 110, 2677
    • 18a Porter NA, Magnin DR, Wright BT. J. Am. Chem. Soc. 1986; 108: 2787
    • 18b Suginome H, Yamada S. Tetrahedron Lett. 1987; 28: 3963
  • 19 Liu Y, Yeung Y.-Y. Org. Lett. 2017; 19: 1422
  • 20 Rendina VL, Kaplan HZ, Kingsbury JS. Synthesis 2012; 44: 686
  • 21 Rao HS. P, Rafi S, Kumar PR, Guravaiah C, Muthanna N. Tetrahedron Lett. 2012; 53: 6877
  • 22 Garbaccio RM, Stachel SJ, Baeschlin DK, Danishefsky SJ. J. Am. Chem. Soc. 2001; 123: 10903
  • 23 Louie J, Bielawski CW, Grubbs RH. J. Am. Chem. Soc. 2001; 123: 11312
    • 24a Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Chem. Rev. 2015; 115: 871
    • 24b Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
    • 25a Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
    • 25b McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239
  • 26 Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
  • 27 Sinclair F, Alkattan M, Prunet J, Shaver MP. Polym. Chem. 2017; 8: 3385
  • 28 Lecourt C, Dhambri S, Allievi L, Sanogo Y, Zeghbib N, Othman RB, Lannou M.-I, Sorin G, Ardisson J. Nat. Prod. Rep. 2018; 35: 105
  • 29 Yee NK, Farina V, Houpis IN, Haddad N, Frutos RP, Gallou F, Wang X, Wei X, Simpson RD, Feng X, Fuchs V, Xu Y, Tan J, Zhang L, Xu J, Smith-Keenan LL, Vitous J, Ridges MD, Spinelli EM, Johnson M. J. Org. Chem. 2006; 71: 7133
  • 30 Velázquez F, Venkatraman S, Wu W, Blackman M, Prongay A, Girijavallabhan V, Shih N.-Y, Njoroge FG. Org. Lett. 2007; 9: 3061
  • 31 Shu C, Zeng X, Hao M.-H, Wei X, Yee NK, Busacca CA, Han Z, Farina V, Senanayake CH. Org. Lett. 2008; 10: 1303
  • 32 Randolph JT, Zhang X, Huang PP, Klein LL, Kurtz KA, Konstantinidis AK, He W, Kati WM, Kempf DJ. Bioorg. Med. Chem. Lett. 2008; 18: 2745
  • 33 Wei X, Shu C, Haddad N, Zeng X, Patel ND, Tan Z, Liu J, Lee H, Shen S, Campbell S, Varsolona RJ, Busacca CA, Hossain A, Yee NK, Senanayake CH. Org. Lett. 2013; 15: 1016
  • 34 Barluenga S, Lopez P, Moulin E, Winssinger N. Angew. Chem. Int. Ed. 2004; 43: 3467
  • 35 Bouazza F, Renoux B, Bachmann C, Gesson J.-P. Org. Lett. 2003; 5: 4049
  • 36 Balestri LJ. I, D’Agostino I, Rango E, Vagaggini C, Marchitiello R, Mariotti M, Casian A, Deodato D, Truglio GI, Orofino F, Sanguinetti M, Bugli F, Botta L, Dreass E. Mol. Diversity 2022; 26: 3399
  • 37 Yasam BK, Pabbaraja S. SynOpen 2022; 6: 227
  • 38 Content S, Dutton CJ, Roberts L. Bioorg. Med. Chem. Lett. 2003; 13: 321
  • 39 Magauer T, Martin HJ, Mulzer J. Angew. Chem. Int. Ed. 2009; 48: 6032
  • 40 Hattori H, Roesslein J, Caspers P, Zerbe K, Miyatake-Ondozabal H, Ritz D, Rueedi G, Gademann K. Angew. Chem. Int. Ed. 2018; 57: 11020
  • 41 Trost BM, Yang H, Thiel OR, Frontier AJ, Brindle CS. J. Am. Chem. Soc. 2007; 129: 2206
  • 42 Tao Z.-F, Sowin TJ, Lin N.-H. Synlett 2007; 2855
  • 43 Ghosh AK, Anderson DD. Org. Lett. 2012; 14: 4730
  • 44 Huang J, Wang Z. Org. Lett. 2016; 18: 4702
  • 45 Reddy DP, Yu B. Chem Asian J. 2020; 15: 2467
  • 46 Fürstner A, Grabowski J, Lehmann CW, Kataoka T, Nagai K. ChemBioChem 2001; 2: 60
  • 47 Stymiest JL, Mitchell BF, Wong S, Vederas JC. Org. Lett. 2003; 5: 47
  • 48 Wels B, Kruijtzer JA. W, Garner K, Nijenhuis WA. J, Gispen WH, Adan RA. H, Liskamp RM. J. Bioorg. Med. Chem. 2005; 13: 4221
  • 49 Harris PW. R, Brimble MA. Org. Biomol. Chem. 2006; 4: 2696
  • 50 Sliwa A, Dive G, Habib Jiwan J.-L, Marchand-Brynaert J. Tetrahedron 2010; 66: 9519
  • 51 Biju P, Bitar R, Lim Y.-H, Wang Y, Berlin M, Aslanian R, McCormick K. Tetrahedron Lett. 2015; 56: 636
  • 52 Kim D.-S, Endo A, Fang FG, Huang K.-C, Bao X, Choi H.-w, Majumder U, Shen YY, Mathieu S, Zhu X, Sanders K, Noland T, Hao M.-H, Chen Y, Wang JY, Yasui S, TenDyke K, Wu J, Ingersoll C, Loiacono KA, Hutz JE, Sarwar N. ChemMedChem 2021; 16: 1741