Synlett 2023; 34(20): 2379-2387
DOI: 10.1055/s-0042-1751476
account
Special Issue Dedicated to Prof. Hisashi Yamamoto

When Aryne Chemistry Meets Organosulfur Compounds

Jiajing Tan
,
Xiaoying Feng
,
Rong Fan
,
Zhe Zhuang
,
Yifeng Guo
J.J.T. is grateful for support from the National Natural Science Foundation of China (21702013, 22271010).


Dedicated to Professor Hisashi Yamamoto on the occasion of his 80th birthday.

Abstract

Organosulfur compounds are ubiquitous in agrochemicals, active pharmaceutical ingredients, natural products, catalysts, and functional materials. The efficient assembly of sulfur-containing skeletons through S(IV) intermediates has emerged as an actively explored direction in organic synthesis. In the past 7 years, our research group has been devoted to developing aryne-induced, sulfonium-zwitterion-based synthetic methodologies. In this account, we systematically overview our recent efforts on this topic, including sigmatropic rearrangements, ring opening of cyclic sulfides, and selective S-arylation of thio-oxindoles. These distinct protocols feature mild conditions and avoid the use of transition metals, allowing facile access to structurally diverse organosulfur compounds. The working hypothesis for our reaction design and key historical precedents are also critically discussed. Our goal is to achieve selectivity control and diversity-oriented synthesis, further advancing sulfonium zwitterion chemistry in the direction of precision synthesis.

1 Introduction

2 Sigmatropic Rearrangement

3 Ring Opening of Cyclic Sulfides

4 Selective Arylation of Thio-oxindoles

5 Conclusion



Publication History

Received: 29 May 2023

Accepted after revision: 15 June 2023

Article published online:
12 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang M, Jiang X.-F. ACS Sustainable Chem. Eng. 2022; 10: 671
    • 2a Butters M, Harvey JN, Jover J, Lennox AJ. J, Lloyd-Jones GC, Murray PM. Angew. Chem. Int. Ed. 2010; 49: 5156
    • 2b Lennox AJ. J, Lloyd-Jones GC. Angew. Chem. Int. Ed. 2012; 51: 9385
    • 2c Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
    • 2d Wang N.-Z, Saidhareddy P, Jiang X.-F. Nat. Prod. Rep. 2020; 37: 246
    • 2e Yu J.-J, Jiang X.-F. Adv. Agrochem 2023; 2: 3
    • 3a Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 3b Yorimitsu H. Chem. Rec. 2021; 21: 3356
    • 3c Fan R, Tan C, Liu Y.-G, Wei Y, Zhao X.-W, Liu X.-Y, Tan J.-J, Yoshida H. Chin. Chem. Lett. 2021; 32: 299
    • 3d Li P.-F. Synlett 2021; 32: 1275
    • 4a Huang H, Kang J.-Y. Synthesis 2022; 54: 1157
    • 4b Smith LH. S, Coote SC, Sneddon HF, Procter DJ. Angew. Chem. Int. Ed. 2010; 49: 5832
    • 4c Chen X.-Y, Li Y.-N, Wu Y.-C, Bai J.-H, Guo Y.-L. J. Am. Chem. Soc. 2023; 145: 10431
    • 4d Chen J.-Q, Li J.-H, Dong Z.-B. Adv. Synth. Catal. 2020; 362: 3311
    • 4e Neuhaus JD, Oost R, Merad J, Maulide N. Top. Curr. Chem. 2018; 376: 15
    • 5a Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 12: 1211
    • 5b Shi J.-R, Li L.-G, Li Y. Chem. Rev. 2021; 121: 3892
    • 6a Pérez D, Peña D, Guitián E. Eur. J. Org. Chem. 2013; 5981
    • 6b Chen J, Fan R, Liu Z.-J, Tan J.-J. Adv. Synth. Catal. 2021; 363: 657
    • 6c Matsuzawa T, Yoshida S, Hosoya T. Tetrahedron Lett. 2018; 59: 4197
    • 6d Zhang R.-R, Peng X, Tan J.-J. Synthesis 2022; 54: 5064
    • 6e Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 6f Chen J, Tan J.-J. In Comprehensive Aryne Synthetic Chemistry . Yoshida H. Elsevier; Amsterdam: 2022: 125
    • 6g Yoshida H. In Multicomponent Reactions in Organic Synthesis . Zhu J.-P, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2015: 39
    • 6h He J, Qiu D, Li Y. Acc. Chem. Res. 2020; 53: 508
    • 6i Xu H, He J, Shi J.-R, Tan L, Qiu D.-C, Luo X.-H, Li Y. J. Am. Chem. Soc. 2018; 140: 3555
    • 6j Santhosh Reddy R, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 6k Shi J.-R, Li L.-G, Shan C.-H, Wang J.-L, Chen Z.-H, Gu R.-R, He J, Tan M, Lan Y, Li Y. J. Am. Chem. Soc. 2021; 143: 2178
    • 6l Shi J.-R, Li L.-G, Shan C.-H, Chen Z.-H, Dai L, Tan M, Lan Y, Li Y. J. Am. Chem. Soc. 2021; 143: 10530
    • 6m Li L.-G, Shan C.-H, Shi J.-R, Li W.-S, Lan Y, Li Y. Angew. Chem. Int. Ed. 2022; 61: e2021173
    • 6n Chen Z.-H, Tan M, Shan C.-H, Yuan X.-L, Chen L.-Y, Shi J.-R, Lan Y, Li Y. Angew. Chem. Int. Ed. 2022; 61: e202212160
  • 7 Nakayama J, Fujita T, Hoshino M. Chem. Lett. 1983; 12: 249
  • 8 Tan J.-J, Zheng T.-Y, Xu K, Liu C.-Y. Org. Biomol. Chem. 2017; 15: 4946
    • 9a Thangaraj M, Gaykar RN, Roy T, Biju AT. J. Org. Chem. 2017; 82: 4470
    • 9b Xu X.-B, Lin Z.-H, Liu Y.-Y, Guo J, He Y. Org. Biomol. Chem. 2017; 15: 2716
  • 10 Chen J, Palani V, Hoye TR. J. Am. Chem. Soc. 2016; 138: 4318
  • 11 Kaneko S, Kumatabara Y, Shimizu S, Maruoka K, Shirakawa S. Chem. Commun. 2017; 53: 119
  • 12 Zheng T.-Y, Tan J.-J, Fan R, Su S.-S, Liu B.-B, Tan C, Xu K. Chem. Commun. 2018; 54: 1303
    • 13a Liu X.-Y, Shi F.-X, Jin C.-C, Liu B.-B, Lei M, Tan J.-J. J. Catal. 2022; 413: 1089
    • 13b Peng X, Xu K, Zhang Q, Liu L, Tan J.-J. Trends Chem. 2022; 43: 10
    • 13c Guo Y.-F, Zhuang Z, Liu Y.-G, Yang X, Tan C, Zhao X.-W, Tan J.-J. Coord. Chem. Rev. 2022; 463: 214525
    • 13d Liu L, Deng Z.-K, Xu K, Jiang P.-X, Du H.-G, Tan J.-J. Org. Lett. 2021; 23: 5099
    • 14a Pan Y. ACS Med. Chem. Lett. 2019; 10: 1016
    • 14b Mei H.-B, Han J.-L, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA. Chem. Eur. J. 2019; 25: 11797
  • 15 Fan R, Liu B.-B, Zheng T.-Y, Xu K, Tan C, Zeng T.-L, Su S.-S, Tan J.-J. Chem. Commun. 2018; 54: 7081
    • 16a Cooper CR, Spencer N, James TD. Chem. Commun. 1998; 1365
    • 16b Akgun B, Hall DG. Angew. Chem. Int. Ed. 2018; 57: 13028
  • 17 Bouziane A, Helou M, Carboni B, Carreaux F, Demerseman B, Bruneau C, Renaud J.-L. Chem. Eur. J. 2008; 14: 5630
  • 18 Fan R, Liu S.-H, Yan Q, Wei Y, Wang J.-W, Lan Y, Tan J.-J. Chem. Sci. 2023; 14: 4278
    • 19a Hall DG. Chem. Soc. Rev. 2019; 48: 3475
    • 19b Zheng HC, Hall DG. Aldrichimica Acta 2014; 47: 41
    • 19c Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 19d Maki T, Ishihara K, Yamamoto H. Org. Lett. 2005; 7: 5047
  • 20 We also monitored the reaction progress of aryne, 4-fluorophenylboronic acid and 1-fluoroisoquinoline by 19F NMR. For details, see the Supporting Information in ref. 18.
  • 21 Saputra A, Fan R, Yao T.-L, Chen J, Tan J.-J. Adv. Synth. Catal. 2020; 362: 2683
  • 22 Fluegel LL, Hoye TR. Chem. Rev. 2021; 121: 2413